страница3/24
Дата03.01.2019
Размер2.16 Mb.
ТипЛабораторная работа

Метод верхних релаксаций решения


1   2   3   4   5   6   7   8   9   ...   24


. (2)

Основное достоинство итерационных методов состоит в том, что точность искомого решения задается.

Число итераций n=n(), которое необходимо выполнить для получения заданной точности , является основной оценкой качества метода. По этому числу проводится сравнение различных методов.

Главным недостатком этих методов является то, что вопрос сходимости итерационного процесса требует отдельного исследования. Доказанные в настоящее время теоремы о сходимости итерационных методов имеют место для систем, на матрицы которых наложены ограничения.

Примером обычных итерационных методов могут служить метод Якоби (метод простых итераций), метод Зейделя, метод верхних релаксаций1.

К особому классу итерационных методов следует отнести вариационные итерационные методы: метод минимальных невязок, метод скорейшего спуска и т.д.

Итерационные методы также делятся на одношаговые, когда для определения решения на j+1 итерации используются значения решения, найденные на j итерации, и многошаговые, когда для определения решения на j+1 итерации используется несколько предыдущих итераций.

Заметим, что существуют системы, для которых итерационный процесс сходится, а вектор невязки, получающийся при подстановке найденного решения в исходную систему



,

получается большим по величине, т.е. найденное решение не удовлетворяет исходной системе. В этом случае в качестве критерия достижения точности решения может быть взята величина невязки, которая оценивается по одной из норм .

Продемонстрируем применение одношагового итерационного метода Якоби на решении системы трех уравнений. Пусть система (1) имеет вид

1   2   3   4   5   6   7   8   9   ...   24

Коьрта
Контакты

    Главная страница


Метод верхних релаксаций решения