• Организация учета на автотранспортных предприятиях
  • Оптимизационные задачи при планировании перевозок 8.1 Оптимизационные задачи и их значение для планирования перевозок
  • 8.2 Транспортная сеть. Расчет кратчайших расстояний
  • 8.3 Транспортная задача. Постановка и методы решения
  • 8.4 Задачи маршрутизации при перевозках грузов полнопартионными отправками
  • Составление рациональных маршрутов при помашинных отправках



  • страница10/17
    Дата12.05.2017
    Размер2.73 Mb.
    ТипМетодическое пособие

    Методическое пособие Нижний Новгород 2015 Содержание Ведение


    1   ...   6   7   8   9   10   11   12   13   ...   17
    Структура управления автотранспортным предприятием

    Структуру управления автотранспортным предприятием формируют с учетом конкретных параметров работы: количества подвижного состава, степени его использования, режимов работы, численности работающих и других факторов. Состав работников аппарата управления устанавливается для выполнения производственно-хозяйственных функций, основными из которых являются:

    - общее руководство;

    - технико-экономическое планирование;

    - организация труда и заработной платы;

    - бухгалтерский учет и финансовая деятельность;

    - материально-техническое снабжение;

    -комплектование и подготовка кадров;

    - общее делопроизводство и хозяйственное обслуживание;

    - организация эксплуатации подвижного состава;

    - техническое обеспечение деятельности АТП.

    Кроме того, в составе отделов или отдельно предусматриваются специалисты по некоторым отдельным вопросам, в том числе по технике безопасности и по безопасности движения.

    Организационную структуру управления АТП (рис. 7.2) рекомендуется создавать тремя самостоятельными блоками управления (эксплуатационный, технический и экономический).

    Всю работу предприятия организует генеральный (исполнительный) директор, на него возлагаются функции принятия решений и командования. Методическое руководство при принятии решений, планировании, организации, учету и контролю возлагается на функциональных руководителей, осуществляющих руководство исполнителями в пределах возложенных на них полномочий и функций. Такая структура управления называется линейно-функциональной.

    Эксплуатационная служба организует транспортный процесс и эффективное использование подвижного состава, проводит маркетинговую работу по упрочению и расширению позиций предприятия на рынке транспортных услуг.

    Техническая служба предназначена для поддержания подвижного состава в технически исправном состоянии, развития производственной базы, осуществления материально-технического снабжения предприятия.

    Экономическая служба определяет направления разработки технических и организационных мероприятий по повышению технической готовности подвижного состава, совершенствованию эксплуатационной и коммерческой деятельности АТП.

    Бухгалтерия АТП проводит учет средств АТП, их сохранности и использования, осуществляет финансовую деятельность предприятия

    Все службы предприятия работают в тесном контакте с другими службами, отделами с целью изыскания возможностей качественного удовлетворения потребностей в перевозках и повышения их эффективности, дальнейшего развития предприятия.

    Основным направлением повышения оперативности и эффективности управления является совершенствование технического оснащения процессов управления. Наибольший эффект дает создание автоматизированных систем управления предприятием (АСУП).

    Целью деятельности автотранспортного предприятия является удовлетворение спроса грузовладельцев на транспортное обслуживание в строго установленное время, в заданных объемах, при сохранении качества перевозимых грузов, с минимальными затратами материальных, трудовых и финансовых ресурсов.

    Исходя из цели деятельности АТП управление перевозками грузов включает:

    - проведение маркетинговой работы по изучению спроса на транспортные услуги и привлечению клиентуры;

    - заключение договоров на организацию перевозок;

    - разработка и внедрение эффективных методов использования подвижного состава, повышения качества транспортного обслуживания;

    - планирование перевозок: текущее – на год, квартал и оперативное – на смену, сутки, декаду, месяц;

    - организацию выпуска подвижного состава на линию и прием его по возвращении с линии;

    - оперативное руководство работой подвижного состава на линии;

    - оперативный учет и анализ результатов работы подвижного состава.

    Выполнение функций по управлению перевозочным процессом возлагается на службу эксплуатации АТП.

    Организационное построение службы зависит от объемов, структуры перевозок и особенностей работы предприятия. С учетом выполняемых функций служба эксплуатации в своем составе может иметь группы:

    - планирования перевозок и маркетинга (иногда ее называют грузовой или оперативного планирования);

    - диспетчерскую;

    - учетно-контрольную.

    Группа планирования перевозок и маркетинга выполняет следующие функции:

    - изучение состояния рынка транспортных услуг и анализ колебаний спроса на перевозки;

    - работа по стимулированию спроса постоянных и привлечению новых клиентов;

    - заключение договоров на организацию перевозок и выполнение других транспортных услуг;

    - изучение объемов и структуры грузопотоков, условий загрузки и разгрузки подвижного состава, движения на маршрутах;

    - разработка технологий транспортных процессов, направленных на повышение эффективности использования подвижного состава;

    - текущее планирование перевозок;

    - разработка суточного (оперативного) плана перевозок;

    - контроль выполнения планов перевозок и разработка мероприятий по повышению качества транспортных услуг.

    Диспетчерская группа:

    - осуществляет сменно-суточное планирование перевозок;

    - организует выпуск подвижного состава на линию и прием его по возвращении с линии;

    - осуществляет оперативное руководство работой подвижного состава на линии (диспетчерское управление перевозками);

    - составляет отчет о выпуске подвижного состава на линию и выполнении планов перевозок.

    В соответствии с выполняемыми функциями диспетчерская группа может подразделяться на подгруппы:

    - центральную диспетчерскую (работает непосредственно на АТП);

    - линейную (выполняет функции контроля и регулирования транспортного процесса в местах погрузки-разгрузки и на маршрутах перевозок).



    Учетно-контрольная группа:

    - принимает от водителей путевые листы и товарно-транспортные накладные;

    - осуществляет контроль заполнения товарно-транспортных документов;

    - производит расчет стоимости выполненной работы;

    - ведет учет выполнения заданий, плана перевозок и заявок клиентов;

    - определяет показатели использования подвижного состава (пробег, коэффициент использования пробега, коэффициент использования грузоподъемности) и использования рабочего времени водителями на линии.



    Технологический цикл работы службы эксплуатации по организации транспортного процесса составляет трое суток; вариант последовательности и сроков выполнения работ приведен в табл. 7.1.

    Заявки на перевозки (заказы на транспортное обслуживание) могут подаваться в группу планирования перевозок различными способами:

    - от постоянных клиентов, с которыми заключены договоры на организацию перевозок, – по телефону;

    - от разовых клиентов – письменно.


    Поступающие заявки регистрируются в журнал и служат основанием для разработки оперативного сменно-суточного плана перевозок.

    В случаях, когда потребность в подвижном составе, рассчитанная в соответствии с заявками, превышает его возможности, определяемые с учетом ведомостей выпуска подвижного состава на линию, решение принимается конкретно по каждому клиенту и по каждой заявке, при этом следует учитывать:

    - наличие договорных отношений с клиентом (постоянных или эпизодических);

    - важность перевозки для клиента и автопредприятия;

    - стоимость заказа и т. д.

    В любом случае, если удовлетворить заявку не представляется возможным, вопрос согласуется с клиентом и при его согласии переносится в очередной план перевозок.

    Последовательность разработки плана перевозок рассмотрена в предыдущем разделе.



    Выпуск подвижного состава на линию осуществляется в соответствии с графиком выпуска, который предварительно согласуется с технической службой АТП. Выпуск может быть ступенчатым (через определенные промежутки времени) или непрерывным. При составлении графика выпуска учитывают:

    - запланированный выход машин на линию по колоннам и маркам (моделям);

    - режим работы грузоотправителей и грузополучателей;

    - фронт погрузки и способ выполнения погрузочно-разгрузочных работ;

    - пропускную способность контрольно-пропускных пунктов;

    - удаленность места жительства водителей от АТП и другие условия, влияющие на выпуск.

    В соответствии с графиком выпуска подвижного состава составляют график работы водителей – время прибытия их в АТП.

    При выпуске подвижного состава на линию сменный диспетчер проверяет у водителя наличие водительских удостоверений; контролирует, сданы ли ранее выданные ему путевые листы; выдает путевой лист на текущий день (смену), технический талон; делает отметки о фактическом выпуске в сменно-суточном плане и в журнале учета движения путевых листов (подпись водителя в получении путевого листа).

    Водитель, получив путевой лист, проходит предрейсовый медосмотр, проверяет техническое состояние автомобиля и представляет его на технический осмотр механику ОТК, о чем также делаются записи в путевом листе и журналах.

    Диспетчерская группа контролирует ход выпуска и обобщает результаты: число выпущенных на линию единиц подвижного состава и соответствие его плану, нарушения в выполнении графика выпуска и меры, принятые для выполнения плана перевозок.



    Управление работой подвижного состава на линии включает:

    - поддержание оперативной связи с пунктами погрузки-выгрузки, грузоотправителями и грузополучателями, линейными диспетчерами на маршрутах перевозок и водителями (если такая связь предусмотрена);

    - контроль соблюдения маршрутов движения при выполнении перевозок, планов вывоза грузов по клиентам (объектам);

    - принятие мер по выполнению плана перевозок при нарушениях в транспортном процессе (при простоях в ожидании погрузки-выгрузки, выходе из строя подвижного состава и в других случаях);

    - направление на линию автомобилей технической помощи по заявкам водителей.

    Одной из наиболее важных функций в работе диспетчера является организация надежного взаимодействия с клиентами по вопросам организации загрузки и разгрузки подвижного состава. Установлено, что 80–90 % случаев сбоев в перевозочном процессе происходит по причине неудовлетворительной организации работ в погрузочно-разгрузочных пунктах, 5–10 % – по технической неисправности подвижного состава и 5–10 % – по вине водителей и диспетчеров.

    Для оперативного вмешательства в перевозочный процесс и сокращения времени реакции системы управления при сохранении эффективности принимаемых решений разрабатываются карты типовых действий диспетчера.

    Карты представляют собой алгоритм действий диспетчера при выработке решений по устранению наиболее типичных сбоев в ходе перевозок и выполнении принятого решения. Каждый вариант решения просчитывается заранее, чем обеспечивается сокращение времени на устранение сбоев в ходе перевозочного процесса.

    При организации перевозочного процесса большим количеством подвижного состава управление с центральной диспетчерской может оказаться неэффективным, в этом случае на объекты, где работает большое число автомобилей, назначают линейных диспетчеров. Иногда линейных диспетчеров назначают на группу грузоотправителей или грузополучателей, расположенных в одном районе.

    Функции линейных диспетчеров включают:

    - контроль наличия грузов в грузообразующих пунктах и организации загрузки подвижного состава;

    - контроль соблюдения норм простоя подвижного состава под погрузочно-разгрузочными операциями и правильности оформления сопроводительных документов;

    - контроль своевременности прибытия подвижного состава в погрузочно-разгрузочные пункты, проверку путевых листов водителей;

    - контроль соблюдения маршрутов перевозок;

    - сбор и анализ информации от водителей об организации работы пунктов отправки-приема грузов, состоянии маршрутов перевозок;

    - согласование с грузоотправителями и грузополучателями вопросов работы пунктов передачи грузов и подвижного состава;

    - учет выполнения плана перевозок по контролируемому объекту (заказчику);

    - принятие мер по переключению подвижного состава на другие объекты при отсутствии грузов, недостатке возможностей грузоперерабатывающих пунктов и в других случаях;

    - составление актов и внесение отметок в товарно-транспортные накладные при простоях подвижного состава сверх установленных норм;

    - выполнение распоряжений старшего диспетчера центральной диспетчерской;

    информирование центральной диспетчерской о результатах выполнения плана перевозок на контролируемом объекте.



    Контроль за работой водителей на линии может осуществляться:

    - наблюдением – при работе большого количества подвижного состава на одном участке или нескольких участках в одном районе. Контроль выполняется линейными диспетчерами или специалистами предприятия путем организации постоянных постов или выездами;

    - на основе информации грузоотправителей и грузополучателей о ходе вывоза (завоза) грузов;

    - диспетчерским сопровождением отдельного транспортного средства. Такой контроль предусматривается за автомобилями, осуществляющими особо ответственные перевозки (перевозки ценных грузов, перевозки «точно в срок» и в других случаях по заказу клиента). Контроль может быть постоянным – за положением и перемещением транспортного средства либо за сохранностью грузов – для сигнализации о несанкционированном вскрытии кузова и доступе к грузу.

    Помимо задач контроля может осуществляться оперативное управление в ходе выполнения перевозок: переадресовка груза, попутная загрузка подвижного состава, предупреждение об изменении маршрута и др. При индивидуальном контроле или управлении с водителем организуется двусторонняя связь по радиотелефону или с помощью средств спутниковой связи.

    При управлении перевозками грузов используются транспортные документы: путевые листы и товарно-транспортные накладные.



    Путевой лист грузового автомобиля (формы № 4-С, 4-П) является основным документом первичного учета, определяющим совместно с товарно-транспортной накладной при перевозке товарных грузов показатели для учета работы подвижного состава и водителя, а также для начисления заработной платы водителю и осуществления расчетов за перевозки грузов.

    Путевые листы выдаются водителю под расписку на один рабочий день (смену), после выполнения перевозок они сдаются диспетчеру, хранятся в организации совместно с товарно-транспортными документами, дающими возможность их одновременной проверки.

    Заполнение путевого листа производится следующим образом:

    при выпуске на линию:

    - диспетчер на основании плана перевозок и ведомости выпуска подвижного состава на линию заносит в путевой лист реквизиты организации, автомобиля и прицепа, водителя, задание водителю, количество горючего на перевозку, показания спидометра;

    - водитель, получив путевой лист, проходит медосмотр, о чем в путевом листе врач делает отметку «Допущен к рейсу» и ставит свою подпись;

    - далее автомобиль представляется на технический осмотр механику ОТК (КТП), в путевом листе на строке «Автомобиль технически исправен. Выезд разрешаю» ставится штамп механика и его подпись;

    - водитель на строке «Автомобиль принял. Водитель» ставит свою подпись;

    - в случае дозаправки горючим на пункте заправки АТП заправщик делает отметки о количестве выданного горючего;



    в ходе выполнения задания заказчик (грузоотправитель, грузополучатель) заполняет раздел «Последовательность выполнения задания», куда записываются данные по каждой ездке, номера прилагаемых товарно-транспортных документов, записи подтверждаются подписями и печатью грузоотправителя (грузополучателя);

    при возвращении в парк:

    - механик проверяет техническое состояние транспортного средства и делает соответствующие отметки «Исправен» или направляет в зону технического обслуживания и ремонта;

    - диспетчер отмечает фактическое время возвращения и показания спидометра, принимает товарно-транспортные документы;

    - таксировщик оформляет результаты работы автомобиля, рассчитывает зарплату водителя.



    Товарно-транспортная накладная (ТТН – форма 1-Т) предназначена для учета движения товарно-материальных ценностей и расчетов за их перевозки автомобильным транспортом. ТТН на перевозку грузов автомобильным транспортом составляется грузоотправителем для каждого грузополучателя отдельно на каждую ездку автомобиля с обязательным заполнением всех реквизитов.

    В условиях, когда на одном автомобиле одновременно перевозится несколько партий грузов в адрес одного или нескольких получателей, ТТН выписывается на каждую партию грузов и каждому грузополучателю в отдельности.

    Организация учета на автотранспортных предприятиях

    Основное условие эффективного управления производством – наличие и грамотное использование информации о состоянии объекта управления, возможность оценки соответствия фактического состояния объекта планируемому, то есть такому состоянию, которое соответствовало бы достижению цели его деятельности.

    В связи с этим одной из основных функций управления считается сбор, обработка, анализ и своевременное представление информации руководителю о состоянии объекта управления. Эта функция реализуется в форме оперативного, бухгалтерского и статистического учета.

    Задачами оперативного учета являются наблюдение, измерение и регистрация состояний и изменений объекта управления. В ходе оперативного учета осуществляются первичный учет и документальное оформление актов и операций деятельности подразделений предприятия и отдельных исполнителей. Первичный учет выполняется по мере совершения операций или сразу после их окончания.

    Схема документооборота и последовательность выполнения операций при оперативном планировании и управлении перевозками показаны на рис. 7.3.

    Первичными документами по учету грузовых перевозок являются путевой лист и товарно-транспортная накладная.

    После выполнения задания путевой лист с приложенными к нему товарно-транспортными накладными водитель сдает сменному диспетчеру. На основании записей в путевом листе исчисляются расход топлива, износ шин, начисляется заработная плата водителю.

    В результате обобщения данных путевых листов диспетчер готовит диспетчерский доклад о выполнении оперативного плана перевозок грузов, в котором обобщает сведения за сутки и с начала месяца: списочное количество автомобилей, автомобиле-дни в работе, коэффициент выпуска на линию, количество перевезенного груза, грузооборот, пробег общий, с грузом, коэффициент использования пробега. Кроме того, в диспетчерском докладе отражаются срывы графиков перевозок, простои и возвраты с линии, происшествия на линии, время опоздания или простоя, причины сбоев при выполнении плана перевозок.

    Анализ динамики изменения технико-эксплуатационных показателей, производимый по мере выполнения перевозок, позволяет установить наиболее перспективные по прибыльности их виды, установить причины невыполнения планов, наметить мероприятия по повышению эффективности транспортного процесса.


    Бухгалтерский учет представляет собой документальное отражение в денежном выражении хозяйственной деятельности АТП, дает информацию о наличии и движении основных фондов предприятия, материальных ценностей и денежных средств, состоянии расчетов с заказчиками транспортных услуг, финансовых результатах деятельности предприятия. В задачи бухгалтерского учета входит также контроль за соблюдением режима финансирования, кредитования и налогообложения.

    Статистический учет подразумевает выполнение операций по сбору, обработке и анализу данных оперативного и бухгалтерского учета, данных специально организованных статистических наблюдений с целью обеспечения органов управления информацией. Данные статистического учета позволяют выявить общие закономерности развития предприятия, результаты работы отдельных подразделений. Они используются при перспективном и текущем планировании деятельности АТП.

    Формы и содержание документов управления перевозками представлены в приложениях [1-5].



    Методические указания по разработке документов

    управления перевозками

    Диспетчерское управление перевозками включает:



    • сменно-суточное планирование;

    • разработку заданий водителям (разнарядка);

    • оформление путевой документации;

    • выпуск подвижного состава на линию и контроль возвращения его с линии;

    • диспетчерское управление в ходе перевозок;

    • прием путевой и товарно-сопроводительной документации, учет и контроль выполнения планов перевозок;

    • диспетчерский отчет о выполнении перевозок.

    Управление сопровождается оформлением соответствующей документации, включающей:

    • заявки (заказы) на перевозку;

    • сменно-суточный план перевозок;

    • маршрутные листы;

    • путевые листы;

    • товарно-транспортные накладные;

    • диспетчерский доклад о выполнении суточного оперативного плана перевозок грузов.

    Контрольные вопросы по разделу 7

    1. Виды планирования грузовых автомобильных перевозок.

    2. Текущее планирование грузовых автомобильных перевозок.

    3. План перевозок грузов на год, его назначение, содержание и порядок разработки.

    4. План по эксплуатации подвижного состава, его назначение, содержание и порядок разработки.

    5. Сменно-суточное планирование, порядок разработки сменно-суточного плана перевозок.

    6. Система управления автотранспортным предприятием.

    7. Служба эксплуатации, ее функции по управлению транспортным процессом.

    8. Диспетчерское управление перевозками.

    9. Товарно-транспортные документы, порядок их разработки и учета.

    10. Схема документооборота при планировании и в ходе выполнения грузовых автомобильных перевозок.

    11. Система управления автотранспортным предприятием.

    12. Управление транспортными процессами.

    13. Организация учета перевозок в автотранспортных предприятиях.

    14. Виды планирования грузовых автомобильных перевозок, цели перспективного, текущего и оперативно-производственного планирования.

    15. Текущее планирование грузовых автомобильных перевозок.

    16. План перевозок грузов на год, его назначение, содержание и порядок разработки.

    17. План по эксплуатации подвижного состава, его назначение, содержание и порядок разработки.

    18. Провозные возможности АТП, порядок их определения при текущем планировании перевозок.

    19. Сменно-суточное планирование, порядок разработки сменно-суточ-ного плана перевозок.

    20. Система управления автотранспортным предприятием, функции управления.

    21. Последовательность принятия решения и его реализации при управлении перевозками.

    22. Структура управления автотранспортного предприятия.

    23. Содержание понятия: управление перевозками.

    24. Служба эксплуатации, ее функции по управлению транспортным процессом.

    25. Технологический цикл работы службы эксплуатации по управлению перевозками.

    26. Схема документооборота при планировании и в ходе выполнения грузовых автомобильных перевозок.

    27. Диспетчерское управление перевозками.

    28. Товарно-транспортные документы, порядок их разработки и учета.

    29. Организация учета перевозок в автотранспортных предприятиях.

    8 Оптимизационные задачи при планировании перевозок
    8.1 Оптимизационные задачи и их значение

    для планирования перевозок

    Повышение эффективности автомобильных перевозок грузов связано с применением методов математики для решения прикладных задач. На этапе проектирования технологических процессов перевозок грузов определяют кратчайшие расстояния между пунктами транспортной сети, решают задачу закрепления грузополучателей за грузоотправителями, составляют рациональные маршруты перевозок. В ходе оперативного управления перевозками могут решаться задачи согласования работы транспортных средств и погрузочно-разгрузочных пунктов, складов, рационального объезда пунктов на маршрутах и другие. В данном разделе рассматриваются наиболее часто встречающиеся при планировании перевозок оптимизационные задачи.

    Эффективность транспортного процесса во многом определяется умелой его организацией. От того, насколько в результате грамотного планирования удастся эффективно использовать рабочее время

    δ t = t дв / T н ,

    сократить непроизводительный пробег



    β = L г / L общ ,

    устранить недогруз подвижного состава



    γ = q ф / q н ,

    зависит результат производственной деятельности всего АТП и соответственно прибыльность перевозочного процесса.

    Сложность решения транспортных задач объясняется тем, что на работу подвижного состава одновременно оказывают влияние множество факторов, учесть которые бывает не только сложно, но зачастую и невозможно. Это наглядно подтверждается формулой для расчета часовой прозводительности подвижного состава

    . (8.1)

    Входящие в формулу показатели неоднозначно влияют на производительность. Так, производительность подвижного состава находится в прямой зависимости от количества перевозимого груза (qнγ). В то же время с увеличением количества загружаемого груза возрастает время простоя: tп-р = f(qнγ) и снижаются скоростные характеристики подвижного состава: его динамичность, маневренность и, в конечном счете, величина технической скорости: Vт = f(qнγ), что в свою очередь снижает производительность

    Целью решения оптимизационных задач обычно является достижение максимального эффекта при ограниченных ресурсах и большом количестве ограничений в условиях выполнения перевозок.

    Степень достижения целей оценивают показателями, которые должны иметь вполне определенные численные значения и называются критериями оптимальности.

    В качестве критерия оптимальности на автотранспорте могут применяться:

    - минимум транспортных издержек;

    - максимум производительности;

    - минимум времени на выполнение перевозок и др.

    Определение и обоснование критерия оптимальности, показателей и характеристик, принимаемых в качестве ограничений и условий, описание их посредством математических формул называется математическим моделированием.

    Применение всевозможных математических методов при планировании транспортного процесса позволяет сформулировать планово-экономические задачи и получить оптимальные результаты при их решении. Такие задачи называют оптимизационными.

    Для постановки оптимизационной задачи требуется установить и сформулировать в виде математических зависимостей условия транспортной ситуации, действующие ограничения и критерий оптимальности.

    В ситуации, показанной на рис. 8.1, условиями являются возможности грузоотправителей по отпуску грузов – ресурс по отпуску



    (8.2)

    и потребности грузополучателей



    . (8.3)

    Целевой функцией является минимум транспортной работы при выполнении перевозки в заданном объеме



    . (8.4)

    Ограничение x ij ≥ 0 – неотрицательные значения грузопотоков.



    Решение задачи оптимально, если при некоторых значениях показателей, определяющих состояние целевой функции, удастся получить ее минимальное (при решении задачи на минимум) или максимальное (при решении на максимум) значение.

    Математическое описание расчета условий, ограничений и критерия оптимальности составляет математическую модель задачи.

    Практически все задачи, решаемые при организации транспортного процесса, по своей сути являются экстремальными, а поиск наилучших решений всегда производится в условиях дефицита и ограниченности ресурсов.

    Выбор оптимального варианта – это закономерный процесс поиска более высокого уровня организации планирования и управления на автомобильном транспорте.

    В зависимости от характера параметров, с помощью которых осуществляется математическая постановка задач, применяются и различные методы их решения. В связи с тем, что в качестве критерия оптимальности чаще всего используют экономические показатели, такие методы называют экономико-математическими.

    Классификация методов оптимального планирования перевозок приведена на рис. 8.2.

    С помощью задач линейного программирования выполняются анализ и решение задач с линейными связями и ограничениями. Термин «программирование» используется как синоним термина «планирование». Подразумевается разработка программы – плана оптимального решения задачи.

    Линейные зависимости характерны для таких задач планирования грузовых перевозок, как закрепление грузополучателей за поставщиками, распределение автомобилей по объектам и маршрутам исходя из минимума непроизводительных пробегов, маршрутизация перевозок и другие. Для решения этих задач могут использоваться графические методы (если имеются только две переменные (рис. 8.3), что на практике встречается крайне редко), но чаще используются специальные алгоритмы.

    Если задачи описываются нелинейными уравнениями, то применяются соответственно методы нелинейного программирования.

    Свойство нелинейности состоит в том, что результат взаимодействия нескольких факторов не равен алгебраической сумме их действий. Например, если для технического обслуживания автомобиля вместо двух ремонтников назначить четырех, то нет оснований утверждать, что они выполнят ту же работу в два раза быстрее; аналогично, два погрузчика из одного вагона не всегда выгрузят груз в два раза быстрее, чем один.

    Для нахождения экстремальных значений в таких задачах используется правило, что в точках перегиба производная функции превращается в ноль, а вторая производная положительна в точке минимума и отрицательна в точке максимума (рис. 8.4)



    Ряд задач планирования перевозок можно решать поэтапно, последовательно. Для решения таких задач используются методы динамического программирования.

    В основе этого метода лежит совокупность приемов, позволяющих находить оптимальные решения, решая последовательно ряд задач, результаты которых используются для выработки стратегии решения последующих, более сложных, задач.

    Кроме методов математического программирования, в решении планово-экономических задач используются методы прикладной математики, базирующиеся на теории вероятностей (стохастическое моделирование), теории массового обслуживания, математической статистики.



    Стохастическое (вероятностное) моделирование предполагает наличие в условиях задачи каких-то неопределенностей.

    Если при решении задач, описываемых детерминированными моделями, показатель эффективности зависит от факторов известных либо вычисляемых в ходе решения задач, то стохастическое моделирование, кроме того, позволяет учесть влияние неизвестных факторов. Дело в том, что реально в практике организации перевозок часто существенное влияние оказывают именно непредвиденные обстоятельства. Если же результат решения задачи зависит от неизвестных факторов (9.5), то даже при известных значениях α и х, но неизвестном ξ задача не может быть решена, она остается неопределенной.



    W=W(α, х, ξ), (8.5)

    где α, х – известные или определяемые в ходе решения параметры;



    ξ – неизвестный параметр.

    Наличие неопределенных параметров ξ переводит задачу в новое качество – задачу о выборе решения в условиях неопределенности. Примером задачи с неопределенными условиями может служить задача определения рационального соотношения между транспортными средствами разной специализации либо разной грузоподъемности.

    Система наиболее часто применяемых в практике планирования грузовых автомобильных перевозок оптимизационных задач приведена на рис. 8.5.
    8.2 Транспортная сеть. Расчет кратчайших расстояний

    Необходимость определения кратчайших расстояний возникает всегда, если требуется получить оптимальный вариант организации перевозок. При густоразветвленной сети автомобильных дорог, когда между пунктами отправления и пунктами назначения имеется несколько вариантов сообщений, определить кратчайший путь бывает сложно. Для нахождения оптимального варианта сообщения применяют математические методы, основанные на использовании в качестве исходной информации транспортной сети, отражающей транспортные связи между пунктами отправления и назначения грузов (пассажиров).

    Транспортная сеть учитывает только ту часть дорожной сети, по которой возможно организовать соответствующие перевозки, то есть учитываются ограничения по состоянию улиц (дорог), одностороннее движение, ограничения на движение грузового транспорта, на полную массу транспортного средства, нагрузка на ось и другие. Модель транспортной сети представляют в виде графа (рис. 9.6).

    Граф состоит из вершин, условно обозначающих пункты отправления, назначения, пересечения дорог, размещения АТП и другие, и отрезков дорог (их называют ребрами), соединяющих вершины. По некоторым из ребер движение может быть разрешено только в одну сторону (ребра 4–1, 6–5 на рис. 9.6), такие ребра называют дугами. Всякое неориентированное ребро может быть представлено как две равноценные, но противоположно направленные дуги.

    Транспортная сеть может быть представлена только связным графом, таким, в котором каждая вершина может быть соединена с любой другой его вершиной. Для выполнения этого условия каждая вершина графа должна иметь как минимум одну входящую и одну выходящую дугу.

    Моделирование транспортной сети начинают с размещения вершин. Вершины присваивают грузообразующим и грузопоглощающим пунктам, центрам крупных жилых кварталов, обособленных населенных пунктов, пересечениям улиц и дорог. Вершины, имеющие между собой транспортное сообщение, связывают ребрами или (в случае односторонней связи) ориентированными дугами.

    При построении графа следует выбирать рациональное число вершин. С одной стороны, необходимо определить расстояния между всеми пунктами, куда или откуда осуществляются перевозки. Следовательно, число вершин должно быть как можно больше. С другой стороны, чем больше число вершин, тем транспортная сеть будет сложнее, определение кратчайших расстояний потребует длительного времени.

    Для снижения размерности задачи и ускорения расчетов для транспортных сетей больших городов или районов применяют микро- и макрорайонирование.

    При микрорайонировании транспортной сети в качестве вершин используют не пересечения улиц (дорог) и конкретные пункты отправления и назначения, а центры микрорайонов (районов строительства, получения или назначения грузов).



    Макрорайонирование транспортной сети заключается в разбиении ее на отдельные подсети, расчеты по которым выполняются раздельно, а затем объединяются для получения общего результата. При изменениях дорожной обстановки производится пересчет отдельной подсети, в которой произошли изменения транспортных связей, но не по всей транспортной сети.

    Задача о кратчайшем пути может быть сформулирована следующим образом: для связного графа, имеющего R вершин и N ориентированных дуг длиной C ij , требуется найти кратчайшие расстояния от заданной вершины i0 до всех остальных вершин этого графа. В каждую вершину графа может входить только одна дуга, принадлежащая какому-либо кратчайшему пути.

    Все алгоритмы решения такой задачи предусматривают последовательное определение расстояний до смежных с заданной вершиной и выбор из них минимальных. Задачи могут решаться как вручную, так и с использованием ЭВМ.

    Для решения задачи все множество вершин сети разбивают на три группы:

    1 – вершины, расстояния до которых уже найдены;

    2 – вершины, смежные (связанные дугой) с вершинами первой группы;

    3 – все остальные вершины.

    Среди вершин второй группы выбирается вершина с наименьшим расстоянием до вершины первой группы и такая вершина переводится из второй группы в первую. После этого вновь определяется состав вершин второй группы с учетом перевода одной из них в первую группу и процесс повторяется. Расчет выполняется до тех пор, пока все вершины из третьей группы не будут переведены последовательно во вторую и затем в первую группу.

    Один из методов решения задачи приведен в качестве примера [Геронимус Б. Л. Экономико-математические методы в планировании на автомобильном транспорте. – М.: Транспорт, 1972., с. 16–24].

    Пусть необходимо определить кратчайшие расстояния от вершины 1 до всех остальных, показанных на рис. 8.6. Из схемы следует, что известно расстояние до вершины 1 (оно равно нулю) и от первой вершины до смежных с ней вершин (2, 3 и 6). Вершина 4 также имеет связь с вершиной 1, но эта связь односторонняя, поэтому от вершины 1 с вершиной 4 связи нет.

    Распределение вершин по группам с указанием номеров предшествующих вершин и расстояний от начальной вершины показывают в виде таблицы (табл. 8.1).

    Вершина 1 начальная, расстояние до нее равно нулю, ее считают в первой группе; вершинам 2, 3 и 6 предшествует вершина 1, расстояния до них соответственно 3, 2 и 8 км, их можно отнести ко второй группе; расстояния до остальных вершин пока не определены, следовательно, они относятся к третьей группе. На этом этапе расстояния до них считают равными какому-то большому числу и обозначают буквой М, предшествующей вершины для них пока также нет, проставляем 0.

    Из расстояний до вершин второй группы наименьшее – до вершины 3, эту вершину из второй группы можно перевести в первую, кратчайшее расстояние до нее r3 = 2.

    На следующем этапе определяют вершины, смежные с вершиной 3: это вершины 1, 2, 4, 5. Вершина 1 входит в первую группу, ее во внимание не принимают. Расстояния до остальных вершин определяют по формуле

    d j = r i + l ij, (8.6)

    где d j – расстояние от начальной точки до j-й вершины;



    r i – кратчайшее расстояние от начальной точки до предшествующей

    i-й вершины;



    l ij – длина ребра (дуги), связывающего i-ю и j-ю вершины.

    d2 = r3 + l 3,2 = 2 + 5 = 7,

    d4 = r3 + l 3,4 = 2 + 2 = 4,

    d5 = r3 + l 3,5 = 2 + 6 = 8.

    Вершина 2 уже во второй группе, расстояние до нее больше, чем записано в табл. 8.1, поэтому оставляют его прежнее значение (3 км). Вершины 4 и 5 переводят во вторую группу, предшествующей для них становится вершина 3. Результаты расчета заносят в табл. 8.2.



    Из вершин второй группы (2, 4, 5, 6) кратчайшее расстояние до вершины 2; ее переводят в первую группу, расстояние до нее r2 = 3.

    Далее начинается следующий этап по определению вершин, смежных с вершиной 2, и расстояний до них. Результаты последующих расчетов приведены в табл. 8.3 – 8.6.







    В последней таблице (табл. 8.6) указаны кратчайшие расстояния от всех вершин до вершины 1 и номера предшествующих вершин. По данным этой таблицы можно определить кратчайший маршрут, перебирая последовательно предшествующие вершины. Из всех вершин наиболее удалена от начальной вершина 7, ей предшествует вершина 8, затем вершины 6, 4, 3, 1. Таким образом, кратчайший путь от вершины 1 к вершине 7 проходит через вершины 3, 4, 6, 8. Кратчайшие маршруты показаны на рис. 8.7.



    На практике, после приобретения соответствующих навыков, пользуются более простым способом, используя для расчетов одну таблицу (табл. 8.10). Расчет выполняют аналогично рассмотренному ранее.

    В табл. 8.7 показан первый шаг расчета: смежные с вершиной 1 вершины 2, 3, 6, потенциалы их соответственно П2 = 3, П3 = 2, П6 = 8.

    Минимальное значение потенциала у вершины 3 (выделен курсивом П3 = 2); вершину 3 переводим в первую группу, смежные с ней вершины – 2, 5, 4; определяем их потенциалы и сравниваем с уже определенными ранее.

    Потенциал вершины 2 П2 = 7; ранее его определили (П2 = 3), следовательно, значение потенциала П2 = 7 во внимание не принимаем.

    Значения потенциалов П5 = 8 и П4 = 4 заносим в строку вершины 3 (табл. 9.8).



    Из полученных значений потенциалов наименьшее у вершины 2 (П2 = 3), его выделяем, а вершину 2 переводим в первую группу. Смежные с вершиной 2 – вершины 7, 5, 3, вершину 1 во внимание не принимаем, она начальная. Потенциалы вершин, смежных с вершиной 2, П7 = 13; П5 = 7; П3 = 8. Потенциал П7 определен первый раз, его заносим в таблицу; потенциал П5 = 7 меньше, чем П5 = 8, следовательно П5 = 7 заносим в строку вершины 2, значение П5 = 8 в строке вершины 3 вычеркиваем; потенциал П3 = 8 больше, чем П3 = 2 в строке вершины 1; его во внимание не принимаем (табл. 8.9).



    После этого вновь определяем вершину с наименьшим потенциалом (П4 = 4), переводим вершину 4 в первую группу и процесс повторяется. Результат расчета приведен в табл. 8.10.



    Кратчайшие расстояния до всех вершин определены.



    8.3 Транспортная задача. Постановка и методы решения

    Необходимость решения транспортных задач появляется, когда имеется несколько, иногда очень много, вариантов выполнения перевозок, а выбрать необходимо один, который при этом был бы оптимальным.

    Такими задачами могут быть:

    - закрепление грузополучателей за грузоотправителями при условии минимума транспортной работы на перевозки;

    - закрепление АТП за маршрутами перевозок из условия минимума нулевых пробегов;

    - выбор варианта организации перевозок с минимальными затратами времени на их выполнение;

    - выбор вариантов транспортного процесса при условии минимальной стоимости перевозок и др.

    Наиболее часто встречается задача минимизации пробега при выполнении перевозок. Такие задачи обычно решаются для однородных грузов, которые можно перевозить однотипным подвижным составом.

    Рассмотрим формулировку транспортной задачи линейного программирования (рис. 8.8).

    Имеются грузообразующие пункты А1, А2, …, Аn с возможностями поставки соответственно а1, а2, …, а n; грузопоглощающие пункты В1, В2, …,В m с потребностями в доставке грузов b 1, b 2, …,b m.; кратчайшие расстояния между грузоотправителями и грузополучателями c ij.

    Необходимо разработать план, удовлетворяющий следующим требованиям:

    - удовлетворить потребности всех получателей;

    - вывезти весь груз от грузоотправителей;

    - при этом обеспечить минимум транспортной работы по грузообороту.



    Экономико-математическая модель транспортной задачи с учетом перечисленных требований выглядит следующим образом:

    cистема ограничений по количеству груза, доставляемого получателям,

    х11 + х21 + …+ хn1 = b1 ,

    x12 + x22 + …+ xn2 = b2 , (8.7)

    … … … … … … … …



    x1m + x2m + …+ xnm = bm .

    система ограничений по количеству груза, вывозимого из пунктов отправки,



    x11 + x12 + …+ x1m = a1 ,

    x21 + x22 + …+ x2m = a2 , (8.8)

    … … … … … … … … ...



    xn1 + xn2 + …+ xnm = an

    Для совместимости систем уравнений предполагается, что возможности грузоотправителей по отправке и потребности грузополучателей совпадают:



    . (8.9)

    План перевозок считается оптимальным, если будет получен минимум транспортной работы



    при x ij ≥ 0. (8.10)

    Математическая постановка задачи описывается линейными уравнениями, это значит, что данная задача относится к классу задач линейного программирования.

    Особенности задачи:

    1) коэффициенты в системе уравнений могут принимать значения 1 или 0 (то есть, когда грузопоток между грузоотправителем и грузополучателем есть, значение коэффициента равно единице, если же грузопотока нет, значение коэффициента равно нулю);

    2) каждая переменная встречается в системах уравнений только дважды (два раза значения ее коэффициентов равны 1, в остальных случаях значения коэффициентов равны 0).

    Уже отмечалось, что для решения задачи необходимо, чтобы соблюдалось условие равенства возможностей грузоотправителей по отправке грузов и потребностей получателей. В реальной жизни чаще случается, что они не равны одно другому. Задача в этом случае называется несбалансированной, а для ее решения вводят дополнительного отправителя или получателя, которого называют фиктивным. Объемы отправки для такого грузоотправителя или потребности в грузе для получателя определяют по формулам



    при , (8.11)

    при (8.12)

    Расстояния перевозок для таких отправителей или получателей принимают равными 0.

    Для решения задачи используют специальную таблицу – матрицу (табл. 8.11).

    В графах матрицы обозначают грузоотправителей Аi и их возможности по отправке груза, в строках – грузополучателей Bj и их потребности; в клетках на пересечении строк и столбцов соответствующих грузоотправителей и грузополучателей, в правом верхнем углу, расстояния перевозок и в ходе решения – объемы перевозок на участке.

    Кроме того, по одному столбцу и строке выделяют для записи величины потенциалов, о чем будет сказано далее.

    Порядок решения:


    1. первоначальное закрепление;

    2. анализ возможностей улучшения решения;

    3. проверка оптимальности полученного решения;

    4. оформление результата.

    1. Первоначальное закрепление потребителей продукции за поставщиками можно выполнить разными методами.

    Метод северо-западного угла наиболее прост: закрепление производится с левого верхнего угла таблицы (клетка В1А1), по мере удовлетворения потребности получателя или исчерпания ресурса поставщика заполняются последующие клетки, расположенные правее и ниже. Как правило, первый полученный результат далек от оптимального, и требуется многократно выполнять проверку на оптимальность и перерасчет.

    Методом двойного предпочтения для первоначального распределения определяются и помечаются (знаком “+” или другим) клетки с минимальным расстоянием по строке и столбцу. В клетки с двойными пометками заносится необходимая или возможная по ресурсу загрузка, после чего строки и столбцы, в которых исчерпаны потребности или возможности, из рассмотрения исключаются и вновь определяются клетки с двойным предпочтением. Затем процесс повторяется. Данный метод позволяет сократить количество проверок и улучшить план распределения.

    Метод Фогеля дает возможность получить первое решение, близкое к оптимальному, иногда сразу оптимальное. Закрепление методом Фогеля производится в следующем порядке:

    - находится разность минимальных расстояний по строкам и столбцам;

    - в строке или столбце с максимальной разностью определяется клетка с минимальным расстоянием, куда и заносится максимально возможная загрузка; при нескольких одинаковых разностях выявляется клетка с минимальным расстоянием (седловая точка), в которую и заносится загрузка;

    - после удовлетворения спроса или исчерпания ресурса строка или соответственно столбец из рассмотрения исключаются, пересчитываются разности по строкам и столбцам и процесс повторяется.

    После завершения закрепления определяется объем транспортной работы при полученном распределении

    . (8.13)

    Вариант первоначального закрепления, выполненный методом двойного предпочтения, приведен в табл. 8.12.

    2. Анализ возможностей улучшения решения проводится для уменьшения трудоемкости дальнейшего решения. Целесообразно рассмотреть возможность перемещения загрузки в клетки с меньшим расстоянием перевозки. Такое перемещение допускается, если его можно компенсировать аналогичным перемещением по другой строке (столбцу), и целесообразно, если при этом будет соблюдено условие: сумма расстояний в клетках, откуда перемещается загрузка, больше аналогичной суммы расстояний в клетках, куда перемещается загрузка.

    Проверка по строкам показывает, что такая передвижка целесообразна из клетки А4В3 в клетку А2В3, его компенсирующая передвижка – А2В2 → А4В2. Количество передвигаемого груза в данном случае составит 25 т, что соответствует значению меньшей загрузки в клетках, откуда перемещается загрузка. Результат передвижения загрузки приведен в табл. 8.13.

    Выигрыш от такого перемещения

    P = [(14 + 10) – (11 + 11)] · 25 = 50 ткм.

    После передвижки загрузки по строкам проверяется возможность аналогичной передвижки по столбцам. Результат перемещения по клеткам В3А4 → В2А4 и В2А1 → В3А1 в размере 15 т показан в табл. 8.13 и 8.14.

    3. Проверка оптимальности распределения производится с помощью вспомогательных показателей, называемых потенциалами.

    Потенциалы определяются для столбцов u и строк v из условия, что разность потенциалов v – u = c, то есть для каждой загруженной клетки разность между соответствующими этой клетке потенциалами равна расстоянию, указанному в этой клетке. В соответствии с данным правилом потенциалы рассчитываются в следующей последовательности:

    - находится загруженная клетка с наибольшим расстоянием;

    - столбцу, где она расположена, присваивается потенциал, равный нулю;

    - определяются потенциалы остальных строк и столбцов; при этом для загруженных клеток соблюдаются правила:

    - для столбцов u = v – c; для строк v = u + c.

    Полученные значения потенциалов заносятся в таблицу (табл. 8.15).

    Однако не все потенциалы удалось определить. Потенциалы u3 и v1 остались ненайденными. Для того, чтобы все потенциалы можно было найти, необходимо, чтобы число загруженных клеток в матрице N было равно n + m – 1 , где n – число отправителей (основных столбцов); m – число получателей (основных строк).

    В случае, если N < n + m – 1, все потенциалы определить невозможно, необходимо искусственно загрузить недостающее количество клеток матрицы, для чего в них записывают ноль. В последующих расчетах с такими клетками оперируют, как с загруженными (табл. 8.16).

    Если же N > n + m – 1, то неоднозначно определяются некоторые потенциалы. В таком случае уменьшают число загруженных клеток.



    После определения потенциалов столбцов и строк производят анализ незагруженных клеток, для чего сравнивают разность потенциалов v – u строки и столбца и расстояние с, указанное в клетке. Наличие клеток, для которых разность соответствующих им потенциалов больше расстояния, указанного в клетке, то есть v – u > c, показывает, что распределение не оптимально и план можно улучшить. Для каждой такой клетки определяют число d по формуле



    d = v – u – c (8.14)

    Клетки, в которых число d положительное, помечают, проставляя в них значение числа d – клетки В1А1, В1А2 (табл. 8.17).

    Из всех таких клеток выбирают клетку с наибольшим значением числа d (в клетке А1В1 d = 3), данной клетке присваивают знак – и строят контур – замкнутую линию, состоящую из прямых горизонтальных и вертикальных отрезков, все вершины которой лежат в загруженных клетках, присваивая клеткам попеременно знак + или –, пока контур не замкнется на начальной клетке. Форма контура любая, но все углы прямые, пересечения линий не являются вершинами контура (табл. 8.18).

    Из всех клеток, обозначенных знаком +, выбирают наименьшее значение и, отнимая его от загрузок со знаком +, прибавляют к загрузкам со знаком –. В нашем примере загрузка из клетки А4В5 (10 т) последовательно по контуру перенесена в клетку А1В1 (табл. 8.19).



    В результате получают новый вариант распределения, который вновь проверяют на оптимальность. Один цикл проверки и улучшения плана называют “итерация”. Количество итераций зависит от того, насколько близко первоначальное распределение к оптимальному (табл. 8.20 – 8.22).





    По достижении оптимального плана вновь определяют величину транспортной работы по формуле (8.13) и сравнивают с первоначальной.

    Если при первоначальном закреплении грузополучателей за грузоотправителями объем транспортной работы составил 2775 ткм (табл. 8.12), в результате перемещения загрузки его удалось снизить до 2710 ткм (см. табл. 8.15), то после оптимизации грузооборот составил 2640 ткм, что на 135 ткм меньше, чем в первоначальном варианте.

    4. Окончательный вариант расчета оформляют в виде таблицы с реальными наименованиями грузоотправителей и грузополучателей (табл. 8.23).




    Считается, что задачи с размером матрицы n × m < 500 можно решать вручную (опытные специалисты решают их за 2–3 часа), при больших размерах их целесообразно решать с помощью ЭВМ.
    8.4 Задачи маршрутизации при перевозках грузов

    полнопартионными отправками

    Маршрутизацией перевозок называют составление рациональных маршрутов движения автомобилей, обеспечивающих сокращение непроизводительных холостых и нулевых пробегов в целом по подвижному составу.

    Ранее (тема 5) указывалось, что при составлении маршрутов возможны разные подходы к закреплению автомобилей на маршрутах:

    в случае, когда автомобили (группы автомобилей) закрепляются за поставщиками, работа организуется, как правило, по маятниковым маршрутам (l г = l х), значение коэффициента использования пробега при этом не может быть больше, чем 0,5

    ; (8.15)

    если же автомобили не закрепляются за поставщиками, маршрут может планироваться через разные пункты погрузки и разгрузки; при рациональной организации перевозок имеется возможность сократить непроизводительные пробеги.

    При небольшом количестве поставщиков и получателей опытные диспетчеры составляют рациональный план перевозок без использования математических методов, но когда число грузообразующих и грузопоглощающих объектов велико, без специальных методик обойтись бывает трудно.

    Составление рациональных маршрутов при помашинных отправках

    Задача составления рациональных маршрутов особенно актуальна при перевозках массовых грузов. При отлаженных схемах хозяйственных связей, когда грузополучатели закреплены за поставщиками, маршрутизация перевозок позволяет сократить холостые пробеги. Целевой функцией задачи в таких случаях может быть минимизация порожних пробегов. Порядок решения такой задачи рассматриваем непосредственно на примере (табл. 8.24).



    Оптимальный вариант перевозок можно получить, решая транспортную задачу на минимум холостых пробегов; удобнее это сделать через количество ездок, для чего вначале, выбрав необходимый подвижной состав, определяют количество ездок по каждому маршруту.

    Например, располагая автомобилем-самосвалом ЗиЛ-4503 грузо-подъемностью 4,5 т и учитывая значение коэффициента использования грузоподъемности для разных грузов (для опилок γ = 0,5, для остальных грузов γ = 1), задание на перевозки представим в виде табл. 8.25.

    Для решения задач такого типа используют метод совмещенных матриц, который заключается в том, что вначале выявляют перевозки, которые целесообразно выполнять по маятниковым маршрутам, остальные объединяют в кольцевые.

    По маятниковым маршрутам целесообразно выполнять такие перевозки, которые выполняются по оптимальному плану. Оптимальный план составляется для холостых ездок и в случаях, когда этот план совпадает с заданиями на перевозки, то такие задания выполняются по маятниковым маршрутам. В соответствии с этим вначале получают оптимальный план холостых ездок, на него накладывают план заданий на перевозки (план груженых ездок) и, если холостые и груженые ездки совпадают, то для выполнения таких перевозок назначают маятниковые маршруты.

    Оптимальный план холостых ездок можно получить, решая транспортную задачу линейного программирования относительно холостых ездок, для чего грузополучателей считают поставщиками порожнего подвижного состава, а грузоотправителей – соответственно получателями такого подвижного состава. Кроме того, под обозначениями грузоотправителей и грузополучателей указываются расстояния от них до АТП. Холостые ездки для отличия их от груженых обозначают числом в скобках. Результат решения транспортной задачи относительно холостых ездок представлен в табл. 8.26.

    В эту же матрицу заносят груженые ездки, которые необходимо выполнить в соответствии с планом, составленным по заявкам грузовладельцев (см. табл. 8.25). Груженые ездки показаны курсивом (табл. 8.27).

    Полученая матрица холостых и груженых ездок называется совмещенной (от нее и название метода); с помощью этой матрицы формируются маршруты движения подвижного состава:

    вначале выделяют маятниковые маршруты. Наличие в одной ячейке таблицы холостых и груженых ездок свидетельствует, что данную пере-возку целесообразно выполнять по маятниковому маршруту. Количество ездок на маятниковых маршрутах соответствует меньшему из значений числа груженых и холостых ездок.



    В данном примере можно формировать маятниковые маршруты:

    № 1 А1Б2– Б2А1 – 5 ездок;

    № 2 А2Б4– Б4А2 – 5 ездок;

    № 3 А4Б5– Б5А4 – 6 ездок;

    сформированные по маятниковым маршрутам ездки вычитают из загрузок соответствующих клеток и составляют новую матрицу (табл. 8.28), которую используют для составления кольцевых маршрутов.



    Для формирования кольцевых маршрутов строят замкнутые контуры, вершинами которых являются загруженные ячейки матрицы. Построение контура (табл. 8.29) начинают с ячейки с груженой ездкой, которую горизонтальной или вертикальной линией соединяют с ячейкой, загруженной холостой ездкой, и в такой последовательности они чередуются, пока контур не замкнется на начальной ячейке. Каждый построенный контур соответствует кольцевому маршруту. Количество оборотов на маршруте соответствует меньшему значению из числа груженых или холостых пробегов на маршруте.

    Контур, представленный в табл. 8.29 (А3Б1–А3Б2–А2Б2–А2Б4–А4Б4–А4Б1–А3Б1), состоит из сплошных горизонтальных линий, соответствующих перевозке груза, и пунктирных вертикальных, которые соответствуют подаче порожнего подвижного состава в пункты погрузки. Минимальная загрузка по этому контуру составляет две ездки. Кольцевой маршрут № 4 формируют, соединяя последовательно по контуру пункты отправления и назначения (А3Б1–Б1А2–А2Б2–Б2А4–А4Б4–Б4А3); по этому маршруту планируют два оборота. Количество оборотов, включенных в маршрут, вычитают из загрузок в вершинах контура, после чего строят новый контур и формируют следующий кольцевой маршрут, пока не будут объединены все груженые и холостые ездки.

    Общий пробег подвижного состава при перевозке грузов по рациональным маршрутам зависит, кроме того, от выбора начального пункта маршрута. Если на маятниковом маршруте начальный пункт погрузки однозначно определен, то на кольцевом число начальных пунктов соответствует числу пунктов погрузки на маршруте. Наилучшим будет вариант, при котором нулевой пробег будет минимальным.

    Для маршрута № 4 возможны три варианта начального пункта:

    1) начальный пункт А3, соответственно окончание маршрута в пункте Б4, нулевой пробег при этом (см. расстояния АТП–А3 – 7 км, Б4–АТП – 5 км) l н = 12 км;

    2) пункты соответственно А2, Б1 , l н = 32 км;

    3) пункты А4, Б2 , l н = 15 км.

    Наименьшее расстояние в первом варианте, следовательно начальным пунктом на маршруте № 4 целесообразно принять пункт А3, маршрут при этом будет заканчиваться в пункте Б4.

    Метод совмещенных матриц является наименее трудоемким по сравнению с другими методами маршрутизации и позволяет при необходимости вносить некоторые изменения в ходе разработки. Для предупреждения ошибок при составлении кольцевых маршрутов схему каждого маршрута контролируют по транспортной сети.

    Разработанные схемы маршрутов являются основанием для планирования перевозок, заполнения маршрутных листов и путевой документации водителей.

    1   ...   6   7   8   9   10   11   12   13   ...   17

    Коьрта
    Контакты

        Главная страница


    Методическое пособие Нижний Новгород 2015 Содержание Ведение