• БИОТЕХНОЛОГИЯ РАСТЕНИЙ Учебно-методическое указание Костанай, 2013 ББК 28.58 С 89 Рецензенты
  • Введение Цель дисциплины
  • 1 Биотехнология производства культуры клеток, тканей и органов растений. Особенности работы в условиях стерильной лаборатории Цели
  • 2 Биотехнология микроклонального размножения особей, генная инженерия. Типы питательных сред и обзор их составов. Цель
  • 3 Банк in vitro и криоконсервация; их значение для сохранения генофонда растений. Гормональная регуляция в культуре клеток и тканей «in vitro» Цель
  • Контрольные вопросы



  • страница1/3
    Дата18.03.2018
    Размер1.51 Mb.
    ТипРеферат

    «Основы биотехнологии растений»


      1   2   3

    Министерство образования и науки Республики Казахстан

    Костанайский государственный университет имени А.Байтурсынова


    Кафедра биологии и химии

    Г.Ж. Султангазина, Г.А. Абилева


    БИОТЕХНОЛОГИЯ РАСТЕНИЙ
    Учебно-методическое указание

    Костанай, 2013



    ББК 28.58

    С 89

    Рецензенты:

    Конысбаева Дамиля Торемуратовна - кандидат биологических наук, доцент кафедры биологии и географии Костанайского государственного педагогического института

    Сулейманова Куляй Уразгалиевна - кандидат биологических наук, доцент кафедры ветеринарной медицины КГУ имени А. Байтурсынова
    Авторы:

    Султангазина Гульнара Жалеловна, кандидат биологических наук, доцент

    Абилева Гульмира Аманкилдиновна, преподаватель
    С 89 Султангазина Г.Ж.
    Биотехнология растений. Учебно-методическое указание для студентов специальности 5В070100-Биотехнология. – Костанай, 2013. – 57 с.

    В учебно-методическом указании представлены рекомендации к практическим занятиям. Учебно-методическое указание содержит описание практических работ, охватывающих все основные разделы программы курса «Биотехнология растений». Учебно-методическое указание предназначено для студентов специальности 5В070100-Биотехнология.

    ББК 28.58
    Утверждено Методическим советом Аграрно-биологического факультета,

    ____ _______2013 г., протокол № ____


    © Султангазина Г.,2013

    Содержание
    Введение…………………………………………………………………………... 4

    1 Биотехнология производства культуры клеток, тканей и органов растений. Особенности работы в условиях стерильной лаборатории ……………………… 5

    2 Биотехнология микроклонального размножения особей, генная инженерия. Типы питательных сред и обзор их составов.……………………………….…. 8

    3 Банк in vitro и криоконсервация; их значение для сохранения генофонда растений. Гормональная регуляция в культуре клеток и тканей «in vitro» ….. 14

    4 Выделение апикальных меристем. Выделение клеток, их групп

    и тканей …………………………………………………………………………….. 18

    5 Получение микрочеренков. Микрочеренкование………………………….…... 22

    6 Стерилизация эксплантов и введение в «in vitro»………………………..…... 25

    7 Культивирование растительного материала in vitro. Основные

    принципы культивирования………………..……………………………………. 27

    8 Каллусогенез в культуре растительных клеток и тканей…………………..... 29

    9 Пестициды и биологические средства от вредных организмов………….…. 30

    10 Суспензионные культуры………………………….......................................... 33

    11 Молекулярные основы и некоторые механизмы взаимоотношений между растениями и фитопатогенными грибами…………………………………..…... 34

    12 Механизмы повышения адаптационного потенциала и

    продуктивности растений в сообществе с микроорганизмами……………….. 38

    13 Биологически активные вещества растений in Vitro ………………..…… 43

    14 Микробиотехнология в защите растений от вредителей и болезней……... 47

    15 Молекулярно-генетический анализ и маркирование признаков у растений 50

    Вопросы для самоконтроля……………………………………………………… 56

    Список использованных источников…………………………………….……... 57

    Введение
    Цель дисциплины - приобретение студентами знаний в области современных технологий создания новых сортов культурных растений, повышения их продуктивности, устойчивости к неблагоприятным факторам среды, а также качества растительной продукции, основанных на клеточных и генно-инженерных методах.

    Задачи:


    - фундаментальные аспекты решения проблемы обеспечения потребности общества в высококачественной безопасной растительной продукции;

    - основы регуляции роста и развития растительной клетки in vitro;

    - специфичность структуры генов и свойства генетически модифицированных (ГМ) растений;

    - значимость биотехнологии для экологического воспитания и формирования естественнонаучного мировоззрения.

    Биотехнология, или технология биопроцессов, - это производственное использование биологических систем (микроорганизмов, растительных и животных клеток и их компонентов) для получения ценных продуктов.

    Основой биотехнологии является генетическая и клеточная инженерия в сочетании с микробиологическим синтезом и широким использованием методов биохимии. Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными свойствами, ранее не наблюдавшимися в природе.

    Бурное развитие биологии привело к разработке методов выращивания отдельных клеток и тканей высших организмов в искусственных условиях (in vitro) (в пробирке). К настоящему времени разработаны довольно эффективные методы культивирования клеток тканей человека, животных и растений на искусственных жидких или твердых средах в пробирках, чашках Петри, флаконах.

    В учебно-методическом указании дается развернутое содержание каждой темы практического занятия, вопросы для самоконтроля.

    В качестве основных учебников по дисциплине можно рекомендовать:

    1 Валиханова Г. Биотехнология растений. Алматы, 1996.

    2 Альмагамбетов К. Основы биотехнологии. Астана, 2006.

    Учебно-методическое указание по дисциплине «Биотехнология растений» составлено с целью помочь работе студентов в овладении теоретическими знаниями и практическими навыками.



    1 Биотехнология производства культуры клеток, тканей и органов растений. Особенности работы в условиях стерильной лаборатории
    Цели:

    - дать представление о биотехнологии, как дисциплины, науки и отрасли производства;

    - ознакомиться с правилами работы в условиях стерильной лаборатории.

    План:

    1 Современная биотехнология растений, как наука и отрасль производства

    2 Организация биотехнологической лаборатории
    Биотехнология - дисциплина, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.

    Современная биотехнология – это наука и отрасль производства, развивающаяся в трех основных направлениях:

    - молекулярная биология и генетическая инженерия;

    - микробиология и микробиологическая промышленность;

    - культура клеток и тканей in vitro.

    Применительно к растительным объектам биотехнология традиционно рассматривается в рамках следующих направлений:

    1 Биотехнология производства культуры клеток, тканей и органов растений;

    2 Биотехнология микроклонального размножения особей;

    3 Генная инженерия;

    4 Банк in vitro и криоконсервация; их значение для сохранения генофонда растений.

    Клеточные технологии, основанные на культивировании in vitro органов, тканей, клеток и изолированных протопластов высших растений, могут облегчить и ускорить традиционный процесс создания новых сортов и видов. Они предлагают принципиально новые пути, такие как сомаклональная изменчивость, мутагенез на клеточном уровне, клеточная селекция, соматическая гибридизация для создания генетического разнообразия и отбора форм с искомыми признаками. Кроме того, клеточные технологии эффективны в создании безвирусного материала вегетативно размножаемых растений.

    Пионером клонального микроразмножения считается французский ученый Жан Морель, который в 50-х годах прошлого столетия получил первые растения – регенеранты орхидей. В это время техника культивирования апикальных меристем in vitro была уже хорошо разработана. Как правило, исследователи в качестве первичного экспланта использовали верхушечные меристемы травянистых растений: гвоздики, хризантемы, подсолнечника, гороха, кукурузы и т.д. В нашей стране работы по микроклональному размножению были начаты в 30-х годах в лаборатории культуры тканей и морфогенеза ИФР РАН. Под руководством Р.Г. Бутенко были изучены условия микроразмножения картофеля, сахарной свеклы, гвоздики, герберы и др. растений и предложены промышленные технологии. В дальнейшем исследования по микроклональному размножении охватили и древесные растения.

    Первые работы по культуре тканей древесных растений были опубликованы в середине 20-х годов ХХ-го столетия и связаны с именем Готре, который показал, что камбиальные ткани некоторых растений способны к каллусогенезу in vitro. Но первые растения - регенеранты осины, доведенные до почвенной культуры, были получены лишь в середине 60-х годов Матесом.

    Культивирование тканей хвойных пород in vitro долгое время редко использовалось как объект исследования. Это было связано со специфическими трудностями культивирования тканей, изолированных из растения. Известно, что древесные, и особенно хвойные растения характеризуются медленным ростом, трудно укореняются, содержат большое количество вторичных соединений (фенолы, терпены и т.д.), которые в изолированных тканях активируются. Окисленные фенолы обычно ингибируют деление и рост клеток, что ведет к гибели первичного экспланта или уменьшению способности тканей древесных растений к регенерации адвентивных почек, которая с возрастом растения-донора исчезает практически полностью. В настоящее время, несмотря на перечисленные трудности, насчитывается более 200 видов древесных растений из 40 семейств, которые были размножены in vitro (каштан, дуб, береза, клен, сосна, ель, секвойя и др.).

    Для организации биотехнологической лаборатории необходимы просторные изолированные помещения, а также современное оборудование и высококачественные реактивы. Для удобства проведения дезинфекции полы стены и потолок в помещениях должны иметь водостойкое и ультрафиолетоустойчивое покрытие.

    Оборудование моечного помещения: мойки с горячей и холодной водой; дистиллированная вода; дистилляторы и бидистилляторы; сушильные шкафы с режимом работы для сушки посуды – до 100-130оС, для инструментов – до 170оС; шкафы для хранения чистой посуды и инструментов, емкости для хранения моющих средств, вытяжные шкафы с эксикаторами для хромпика (H2SO4 98 % + K2CrO7).

    Оборудование помещения для приготовления питательных сред: лабораторные столы; холодильники для хранения маточных растворов солей, гормонов и витаминов; аналитические и торсионные весы; иономер; магнитные мешалки; плитки, газовые горелки; набор посуды (колбы, стаканы, мерные цилиндры, мензурки, пробирки и др.), необходимый набор химических реактивов надлежащей степени чистоты (ХЧ, Ч, ЧДА).

    Оборудование помещения для стерилизации: автоклавы с режимом работы – давление 1-2 атмосферы и температура 120оС; стеллажи для штативов с питательными средами; шкафы для хранения стерильных материалов. Данное помещение должно быть оборудовано приточно-вытяжной вентиляцией и иметь канализационный слив для отвода конденсата из автоклава.

    Оборудование помещения для инокуляции растительных эксплантов на питательные среды: ламинар-боксы, лабораторные столы, стеллажи, бактерицидные лампы, шкафы для материалов и оборудования.

    Оборудование культуральных помещений: световое отделение – источники освещения со спектром близким к спектру дневного света (от 3 до 10 kLx), кондиционер для регуляции температуры (25±2оС) и влажности воздуха (70 %), стеллажи для штативов с культивируемым материалом; темновое отделение – с тем же оборудованием, исключая источники освещения. Для культивирования эксплантов на питательной среде желательно использовать термостаты или хладотермостаты, способные с высокой точностью поддерживать задаваемые режимы температуры и влажности воздуха.

    Необходимый набор посуды, инструментов и материалов в биотехнологической лаборатории: мерные колбы, колбы Эрленмейера, химические стаканы, мерные цилиндры, чашки Петри, пробирки, бутылки, пипетки, стеклянные палочки, стеклянные и мембранные фильтры, ланцеты (в том числе глазные, хирургические, анатомические), ножницы, пинцеты, ножи, бритвенные лезвия, препарировальные иглы, шпатели, бумага (оберточная, пергаментная, фильтровальная), фольга алюминиевая, вата, марля, шпагат.

    При работе в стерильном помещении лаборатории все сотрудники бактериологической лаборатории обязаны соблюдать следующие правила работы, которые обеспечивают стерильность в работе и предупреждают возможность возникновения внутрилабораторных заражений:

    1 Все лица, находящиеся в лаборатории, должны быть в халатах, сменной обуви (либо бахилах), белой шапочке или косынке.

    2 В помещении запрещается прием пищи и курение, хранение продуктов питания.

    3 Нельзя вносить в лабораторию посторонние вещи.

    4 Запрещается выходить за пределы лаборатории в халатах или надевать верхнее платье на халат.

    5 Каждый работник должен пользоваться только своим рабочим местом.

    6 Все операции должны производиться с соблюдением правил стерильности: все стерильные работы проводят вблизи пламени горелки, переливание зараженных жидкостей производят над лотком с дезинфицирующим раствором и т. п.

    7 Нужно строго следить за чистотой рук: по окончании работы с заразным материалом их дезинфицируют. Рабочее место в конце дня приводят в порядок и тщательно дезинфицируют.

    8 Весь инвентарь, находившийся в контакте с заразным материалом, подлежит стерилизации или уничтожению.

    Биотехнологическую лабораторию необходимо содержать в чистоте. Следует регулярно проводить гигиеническую уборку помещений лаборатории. Обеспечить полную стерильность лаборатории очень трудно и это не всегда необходимо, но значительно снизить количество микроорганизмов в воздухе и на различных поверхностях в лабораторных помещениях возможно. Это достигается путём применения на практике методов дезинфекции, то есть уничтожения возбудителей инфекционных болезней на объектах внешней среды.

    Для культивирования стерильных проростков необходимо использовать ламинар-боксы, обеспечивающие посадку эксплантов на питательную среду без заражения микроорганизмами.

    Все поверхности ламинара обрабатываются 96 % спиртом, простерилизованные инструменты, материалы, растительный материал помещают на стол ламинара и включают УФ-излучение. Через 20 минут выключают УФ и включают биофильтры. Для работы в ламинар-боксе надевают стерильный халат и шапочку, руки обрабатываю 96 % спиртом. Пинцеты, скальпели и препарировальные иглы помещают в стакан с 96 % спиртом. Перед каждой манипуляцией инструменты обжигают на пламени спиртовки. В случае нарушения стерильности на средах хорошо развиваются микроорганизмы (грибы, бактерии), нарушающие состав среды и подавляющие рост растительных эксплантов.

    Посуду, халаты, вату, бумагу, дистиллированную воду, питательные среды стерилизуют в автоклавах под давлением пара 1-2 атмосферы и температурой 120оС в течении 20-60 мин, в зависимости от объёма стерилизуемого материала.

    Колбы, штативы со средой, вату, бумагу, халаты перед автоклавированием заворачивают в целлофановую бумагу, либо помещают в биксы.

    Металлические инструменты автоклавировать нельзя, так как под действием пара образуется ржавчина. Поэтому их стерилизуют сухим жаром в термостатах с температурой 170-250оС в течении 1-2 часов.


    Контрольные вопросы:

    1 Как устроена биотехнологическая лаборатория?

    2 Как простерилизовать питательные среды, посуду, дистиллированную воду, инструменты?

    3 Как происходит стерилизация помещения лаборатории?



    2 Биотехнология микроклонального размножения особей, генная инженерия. Типы питательных сред и обзор их составов.
    Цель:

    - ознакомить обучающихся с методами микроклонального размножения особей и генной инженерии



    План:

    1 Биотехнология микроклонального размножения особей

    2 Генная инженерия

    3 Типы питательных сред и обзор их составов


    Термином "микроклонального размножения" называют массовое бесполое размножение растении in vitro, при котором полученные особи растений генетически идентичны исходному экземпляру.

    Достижения в области культуры клеток и тканей привели к созданию принципиально нового метода вегетативного размножения - микроклональное размножение. Микроклональное размножение - получение in vitro, неполовым путем, генетически идентичных исходному экземпляру растений. В основе метода лежит уникальная способность растительной клетки реализовывать присущую ей тотипотентность. В соответствии с научной терминологией клонирование подразумевает получение идентичных организмов из единичных клеток. Этот метод имеет ряд преимуществ перед существующими традиционными способами размножения:

    - получение генетически однородного посадочного материала;

    - освобождение растений от вирусов за счет использования меристемной культуры;

    - высокий коэффициент размножения;

    - сокращение продолжительности селекционного процесса;

    - ускорение перехода растений от ювенильной к репродуктивной фазе развития;

    - размножение растений, трудно размножаемых традиционными способами;

    - возможность проведения работ в течение всего года, а не только в течение вегетационного периода;

    - возможность автоматизации процесса выращивания.

    Существует несколько моделей микроклонального размножения, каждая из них имеет свои преимущества и недостатки: а) индукция развития адвентивных побегов непосредственно из ткани экспланта, метод является очень эффективным, все признаки размножаемого образца полностью сохраняются; б) развитие пазушных побегов основано на снятии апикального доминирования, это наиболее надежный способ, заключающийся в ведении полученной массы побегов на микрочеренки, которые используются в качестве вторичных эксплантов для повторения цикла размножения, введение в питательную среду веществ с цитокининовой активностью приводит к образованию пучков маленьких побегов, пазушные почки дают начало новым побегам, считается, что метод имеет минимальную степень риска для получения однородного потомства; в) получение каллусной ткани с последующей индукцией органогенеза, теоретически этот метод наиболее перспективен с точки зрения коэффициента размножения, однако, в процессе дедифференциации появляется риск получить вегетативное потомство с вмененными формами, поэтому рекомендуется избегать длительной каллусной культуры и вести обязательный цитологический контроль растений-регенерантов.

    Генетическая инженерия - конструирование in vitro функционально активных генетических структур (рекомбинантных ДНК), или иначе - создание искусственных генетических программ (Баев А. А.). По Э. С. Пирузян генетическая инженерия - система экспериментальных приемов, позволяющих конструировать лабораторным путем (в пробирке) искусственные генетические структуры в виде так называемых рекомбинантных или гибридных молекул ДНК.

    Генетическая инженерия - получение новых комбинаций генетического материала путем проводимых вне клетки манипуляций с молекулами нуклеиновых кислот и переноса созданных конструкций генов в живой организм, в результате которого достигается их включение и активность в этом организме и у его потомства. Речь идет о направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма с последующим введением их в живой организм. При этом рекомбинантные ДНК становятся составной частью генетического аппарата рецепиентного организма и сообщают ему новые уникальные генетические, биохимические, а затем и физиологические свойства.

    Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека. Например, получение «биологических реакторов» - микроорганизмов, растений и животных, продуцирующих фармакологически значимые для человека вещества, создание сортов растений и пород животных с определёнными ценными для человека признаками. Методы генной инженерии позволяют провести генетическую паспортизацию, диагностировать генетические заболевания, создавать ДНК-вакцины, проводить генотерапию различных заболеваний.

    Технология рекомбинантных ДНК использует следующие методы:

    - специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;

    - быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;

    - конструирование рекомбинантной ДНК;

    - гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью, основанную на их способности связывать комплементарные последовательности нуклеиновых кислот;

    - клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;

    - введение рекомбинантной ДНК в клетки или организмы.

    В зависимости от вида растений необходимо испытывать как твердые (агаризованные), так и жидкие питательные среды. Иногда жидкие среды имеют преимущество, так как обеспечивают большую подвижность трофических элементов. Например, при размножении роз более успешным было культивирование побегов на двухслойной питательной среде: нижний слой – агаризованный, верхний – жидкий. На эффективность размножения могут также влиять расположение экспланта (горизонтальное или вертикальное), тип пробок (ватные, пластмассовые, стеклянные, металлические и т.д.), а также соотношение объема эксплантов и количества питательной среды для оптимального освещения и газообмена эксплантов.

    Состав питательной среды необходимо подбирать для каждого вида растений. На микроклональное размножение влияют гормоны, минеральные соли, витамины и углеводы. При размножении in vitro часто используют среды Мурасиге и Скуга, Гамборга, Хеллера и другие. Обычно используют среду Мурасиге–Скуга (MS), которая содержит много неорганического азота, что стимулирует процессы органогенеза и соматического эмбриогенеза. Вопрос оптимального соотношения NH4 - NO3 остается открытым, так как литературные данные весьма противоречивы и универсального рецепта для всех видов растений нет. В качестве источника углеродного питания используют различные углеводы типа сахарозы, глюкозы, фруктозы, галактозы. Разные культуры требуют различной концентрации углеводов на разных этапах микроклонального размножения.

    Компоненты среды для выращивания растительных клеток и тканей можно разделить на 6 основных групп, что обычно отражает порядок приготовления концентрированных маточных растворов: макроэлементы, микроэлементы, источники железа, витамины, источники углерода, фитогормоны.

    Основой для всех питательных сред для культивирования растительных эксплантов является смесь минеральных солей. Это соединения азота в виде нитратов, нитритов, солей аммония; фосфора – в виде фосфатов; серы – в виде сульфатов; а также растворимых солей К+, Na+, Са++, Мg++. Железо используется в виде хелатов [FeО4 или Fe2O4 + ЭДТА (этилендиаминтетрауксусная кислота) или её натриевая соль Na ЭДТА (трилон Б)] – наиболее доступной форме для усвоения растительными тканями.

    Азот, фосфор, сера входят в состав органических соединений: белков, жиров, нуклеиновых кислот. Железо, цинк, марганец, молибден, кобальт в сочетании с порфиринами образуют макромолекулы пигментов фотосинтеза (хлорофилла), окислительно-восстановительных ферментов (каталазы, пероксидазы, полифенолоксидазы). Следовательно, все эти соединения выполняют в клетках и тканях структурную функцию. В то же время ионы К+, Na+, Са++, Cl –, Н + необходимы для регуляции pH среды и поддержания физиологических градиентов клеток (тургора, осмотического давления, полярности).

    В качестве источника углерода для биологических макромолекул, а также при культивировании гетеротрофных тканей (каллусов и суспензий) в питательные среды добавляют углеводы в концентрации 20-60 г/л. Обычно это дисахариды (сахароза), моносахариды (гексозы: глюкоза и фруктоза, пентозы: ксилоза и другие). Полисахариды в питательных средах практически не используются. Только некоторые типы тканей (опухолевые), содержащие гидролитические ферменты, выращивают на средах с крахмалом, рафинозой, целлобиозой.

    Для стимуляции биохимических реакций в клетке используют биологиче-ские катализаторы – витамины группы В (В1, В6, В12), С (аскорбиновую кислоту), РР (никотиновую кислоту), мезоинозит.

    Тиамин (В1) входит в состав пируватдекарбоксилазы, участвует в превращениях углеводов. Тиаминпирофосфат входит в состав ферментов окислительного декарбоксилирования кетокислот (пировиноградной и кетоглутаровой), является коферментом транскетолазы.

    Пиридоксин (В6) в виде фосфорнркислого эфира входит в состав ферментов декарбоксилирования и переаминирования аминокислот.

    Никотиновая кислота (РР) в виде амида входит в состав дегидрогеназ НАД и НАДФ, катализирующих донорно-акцепторную цепь Н+ (отнятие Н+ от молекул органических веществ).

    Для управления процессами формообразования в культуре тканей необходимы биологические регуляторы роста и развития – фитогормоны. Эти вещества влияют на дифференциацию и дедифференциацию клеток и тканей, инициируют гистогенез, индуцируют деление и растяжение клеток, участвуют в процессах старения и созревания, либо стимулируют, либо ингибируют рост и развитие клеточных культур, обуславливают формирование пола. В биотехнологических исследованиях чаще используют гормоны, стимулирующие рост и развитие: ауксины, цитокинины, гиббереллины.

    Ауксины: ИУК – индолил-3-уксусная кислота, ИМК – индолил-3-масляная кислота, НУК – нафтилуксусная кислота, 2,4-Д – 2,4-дихлорфенокси-уксусная кислота.

    Цитокинины: кинетин – 6-фурфуриламинопурин, зеатин, NN-дифенил-мочевина, 6-БАП – 6-бензиламинопурин.

    Гиббереллины: гиберрелловая кислота.

    В качестве биологических добавок для индукции первичного каллуса можно использовать растительные экстракты (10-15 % от общего объёма среды): кокосовое молоко (жидкий эндосперм кокосового ореха), вытяжки из незрелых зерновок кукурузы (лучше в период молочной спелости), которые содержат цитокинины – кинетин и зеатин (6-ти замещенные аминопурины) и NN-дифенилмочевину.

    В культуре in vitro применяют жидкие и агаризованные (твердые) среды. Жидкие среды используются для культивирования суспензий, каллусов, изолированных органов и тканей, растений-регенерантов. При этом для поддержания эксплантов в пробирки со средой помещают специальные мостики-поддержки из фильтровальной бумаги или синтетических пористых материалов.

    Агаризованные среды готовят на основе агар-агара – полисахарида, входящего в состав морских водорослей, который образует с водой гель при pH 5,6-6,0. Иногда в качестве уплотнителя и заменителя агар-агара используют полиакриламидные гели (биогели) P10 и P200.

    Для искусственных питательных сред растворы макро- и микросолей готовят заранее и используют многократно. Это маточные (концентрированные) растворы. Их хранят в специальных условиях: макро- и микросоли в холодильнике в сосудах с притертыми пробками при 0…+4оС; витамины, фитогормоны, ферменты, растительные экстракты – при -20оС в небольших по 5-10 мл сосудах с пробками (пеницилловые флаконы).

    Маточные растворы макросолей обычно превосходят рабочие по концентрации в 10-40 раз, микросолей – в 100-1000 раз, витаминов – в 1000 раз.

    Растворы фитогормонов желательно готовить непосредственно перед работой со средами.

    Для приготовления маточного раствора макро- и микросолей каждую соль растворяют в отдельном стаканчике при нагревании, затем сливают и доводят до нужного объема. В охлажденную смесь микросолей последним добавляют раствор солей молибдена, а в макросоли – раствор солей магния (для предотвращения выпадения осадка).

    Маточные растворы хлористого кальция и хелата железа (сернокислое железо + ЭДТА, либо Na ЭДТА – трилон Б) готовят и хранят отдельно от других солей.

    Концентрированные растворы витаминов готовят следующим образом: 10-кратные навески растворяют в 10 мл дистиллированной воды каждый отдельно.

    Фитогормоны – это вещества, которые плохо растворяются в воде. Поэтому предварительно 100 мг вещества растворяют в небольших количествах (0,5-2,0 мл) спирта (ауксины, гиббереллины), 0,5-1 н HCl или КОН (цитокинины), затем подогревают до полного растворения (кроме абсцизовой кислоты и кинетина) и доводят до 100 мл объема (1 мл содержит 1 мг вещества).
    Контрольные вопросы:

    1 Что называют микроклональным размножением?

    2 Модели микроклонального размножения

    3 Цели генетической инженерии

    4 Жидкие и агаризованные (твердые) среды в культуре in vitro
    3 Банк in vitro и криоконсервация; их значение для сохранения генофонда растений. Гормональная регуляция в культуре клеток и тканей «in vitro»
    Цель:

    - ознакомить обучающихся с принципами сохранения банка in vitro путем криоконсервации



    План:

    1 Банк in vitro и криоконсервация; их значение для сохранения генофонда растений

    2 Гормональная регуляция в культуре клеток и тканей «in vitro»
    При получении клеточных линий с полезными признаками встает проблема сохранения этих признаков. Растения могут хранить генетическую информацию в семенах, однако этот источник не вполне надежен, так как со временем из-за мутаций всхожесть семян падает. Кроме того, некоторые растения размножаются только вегетативно. Этим обусловлена необходимость сохранения части материала in vitro. С другой стороны, в некоторых случаях удается получить новые клеточные линии, синтезирующие большее количество вторичных метаболитов, то есть более продуктивные, которые тоже нуждаются в сохранении.

    Для исследования физиологических и биохимических процессов, протекающих в тканях, также требуются стандартные исходные культуры, чем вызвана необходимость сохранять материал в течение определенного промежутка времени, когда идут серийные эксперименты. Все это делает проблему сохранения генофонда весьма актуальной.

    Можно, конечно, пассировать и перевивать клеточные культуры. Однако при этом возникает опасность сомаклональной изменчивости, накопления мутаций, контаминаций (заражения чужеродным генетическим материалом). Это также требует определенных финансовых и трудовых затрат (необходимость частых пересадок, расходы, связанные со средой и т.д.). Существует разные подходы к сохранению культур: криосохранение, замедление роста, распылительная или лиофильная сушка (для клеток микроорганизмов).

    Криосохранение - замораживание при сверхнизких температурах. Обычно его проводят в жидком азоте, при температуре -196oC.

    Успех низкотемпературной консервации зависит от ряда факторов:

    - вид и тип клеток,

    - их концентрация в суспензии,

    - состав среды для консервирования,

    - вид и концентрация криопротектора,

    - режим охлаждения и отогрева,

    - способ реабилитации клеток после отогрева.

    Существенную роль в успешном замораживании клеток играет их морфофизиологическое состояние: клетки, находящиеся в стационарной фазе роста, менее устойчивы к повреждающему действию низкотемпературной консервации, чем клетки, находящиеся в экспоненциальной фазе роста. Клетки для замораживания отбирают в середине экспоненциальной фазы ростовой кривой.

    Немаловажное значение имеет и плотность замораживаемой суспензии. Оптимальные результаты по восстановлению клеток были получены при замораживании клеточной суспензии плотностью 1*105 - 5*106 клеток в 1 мл.

    Для растительных клеток часто требуется предварительное культивирование в особых условиях. В среду добавляют различные вещества, например:

    - 2-6% маннит или сорбит для уменьшения размера вакуолей;

    - аминокислоты, в первую очередь пролин, который служит для связывания воды в клетке (концентрация до 1 моля или 11,5%), аспарагин, γ-аминомасляную кислоту;

    - диметилсульфоксид (ДМСО), который добавляют к среде для предкультивирования в концентрации от 2,5 до 10% на 48 часов для увеличения проницаемости цитоплазматической мембраны;

    - кроме того, применяют искусственное закаливание к холоду, когда снижают температуру культивирования, имитируя естественный осенний процесс подготовки к периоду зимнего покоя (применим только для растений умеренного климата). Клеточные культуры выдерживают несколько суток при температуре +8+10oC, а затем при +2+5oC в течение 1 - 6 недель.

    Процесс замораживания растительных клеток от животных отличает, в основном, наличие этапа предварительного культивирования.

    Криопротекторы - вещества, позволяющие снизить повреждающее действие физико-химических факторов при криоконсервировании. К ним относятся сахароза, декстран, этиленгликоль, поливинилпирролидон, диметилсульфоксид (ДМСО), глицерин. Для определения токсичности криопротектора клетки выдерживают при комнатной температуре в различных его концентрациях в течение 30 - 50 минут, после чего определяют их жизнеспособность. Дополнительно оценивают его протективные свойства путем пробного замораживания и оттаивания культур. Наиболее часто в качестве криопротекторов используют глицерин и ДМСО. Перед добавлением криопротектора суспензию клеток концентрируют путем центрифугирования, надосадочную жидкость сливают. Криопротекторы вносят в культуру за час до замораживания, что приводит к изменению проницаемости мембраны, изменению точки замерзания и оттаивания.

    Программы охлаждения могут быть различными, но для всех них характерна медленная скорость охлаждения. При замораживании происходит образование льда внутри и снаружи клеток. Характер этих изменений зависит от изучаемого образца и обработки криопротекторами, но главным образом, от скорости охлаждения. При медленном охлаждении происходит образование внеклеточного льда, приводящее к обезвоживанию клетки до того, как будет достигнута точка замерзания цитоплазмы. При быстром охлаждении клетки быстрее замораживаются изнутри, медленнее обезвоживаются, что приводит к образованию кристаллов льда внутри клетки. В этом случае клетки повреждаются. Обычно охлаждение проводят в два этапа:

    - Первый этап - от +20 до -28oC со скоростью 1 градус в минуту (для растительных клеток скорость замораживания 0,5 градуса в минуту до -35оС), выдерживают при этой температуре 15 минут;

    - Второй этап: погружение в жидкий азот (мгновенное охлаждение до - 196oC).

    Замораживание производят в специальных аппаратах. При их отсутствии - на спиртовой бане (0,5 - 1 литр спирта наливают в термос с металлической колбой, погружают в него ампулы на 15 минут и добавляют при помешивании жидкий азот или сухой лед; доводят температуру до -32oC (температура должна быть не выше -28 и не ниже -32оС). Далее переносят ампулы в жидкий азот.

    При размораживании ампулы пинцетом переносят в водяную баню с температурой +37+40оС, ампула объемом в 1 мл размораживается в течение 0,5 - 1 минуты.

    После размораживания растительные клетки отмывают 3 - 10% раствором сахарозы.

    Далее клетки проверяют на жизнеспособность с помощью витальных красителей, окрашивающих мертвые клетки. Окончательным критерием служит четкое возобновление роста на стандартных питательных средах, используемых для данной культуры.

    Перевиваемые культуры животных клеток после размораживания имеют повышенную чувствительность к вирусам, которая проявляется в течение первых двух пассажей. Далее чувствительность возвращается к исходной.



    Фитогормоны – это биологические регуляторы роста и развития растений, осуществляющие взаимодействие клеток, тканей и органов, стимулирующие и ингибирующие морфогенетические и физиологические процессы в растительных организмах. Фитогормоны влияют на деление и рост клеток растяжением, состояние покоя, созревание, старение, формирование пола, устойчивость к стрессу, тропизмы, транспирацию; обеспечивают функциональную целостность растительного организма, закономерную последовательность фаз индивидуального развития.

    По химической природе гормоны растений четко подразделяются на две группы: производные мевалоновой кислоты (гиббереллины, абсцизины, брассины, фузикокцин, цитокинины), производные аминокислот (ауксины –из триптофана, этилен – из метионина и аланина). Биосинтез фитогормонов происходит в определенных частях растений: в апексах побегов образуется ИУК– индолил-3-уксусная кислота, лист служит донором ключевого продукта синтеза гиббереллинов – каурена, а также абсцизовой кислоты, в апексах корней синтезируется кинетин, а в зоне растяжения корня – гиббереллины, источником зеатина является эндосперм прорастающих семян.

    По функциональному действию различают 5 основных групп фитогормонов: ауксины, цитокинины, гиббереллины, абсцизины и этилен. Ауксины в культуре тканей вызывают рост клеток растяжением, в больших концентрациях – деление клеток, в сочетании с цитокининами – органогенез. В биотехнологии применяют как природные ауксины (ИУК), так и синтетические [ИМК (индолил-З-масляная кислота), ИПК (индолил-З-пропионовая кисло-та), 2,4-Д (2,4-дихлорфеноксиуксусная кислота), НУК(нафтилуксусная ки-слота)].

    Цитокинины в сочетании с ауксинами индуцируют митозы, пролиферацию клеток, почек и побегов. К природным цитокининам относятся: зеатин, кинетин (6-фурфуриламинопурин), NN-дифенилмочевина (кокосовое молоко); к синтетическим – 6-БАП (6-бензиламинопурин).

    Гиббереллины стимулируют рост клеток растяжением, а также синтез ауксинов и цитокининов. Сейчас известно около 60 видов гиббереллинов. В культуре ткани используется гибберелловая кислота.

    Абсцизины (АБК – абсцизовая кислота) и этилен ингибируют ростовые процессы, деление клеток, в сочетании с цитокининами и хлорхолинхлоридом индуцируют органогенез (образование микроклубней).

    Гормональная система тесно связана с генетическим аппаратом клетки. Фитогормоны не только влияют на степень метилирования ДНК и таким образом регулируют экспрессию генов, но и связываются с белками – репрессорами на опероне, что приводит к активации структурных генов и синтезу определенных ферментов. Следовательно, изменяя соотношение гормонов в питательных средах, можно в какой-то степени изменять и генетические программы клеток и тканей. Эти процессы известны как дедифференциация, ре-дифференциация и дифференциация клеток и тканей.

    В растении фитогормоны находятся в тесном взаимодействии друг с другом: ИУК индуцирует синтез этилена и цитокининов, ГК увеличивает содержание ИУК, цитокинины усиливают синтез МУК, но снижают содержание свободной АБК, этилен тормозит транспорт ИУК и увеличивает содержание АБК.

    В культуре ткани фитогормоны, добавленные в различных пропорциях, регулируют синтез эндогенных гормонов растений, что проявляется в разнообразных морфогенетических реакциях клеток и тканей.

    В 1955 г. Скуг и Миллер предложили гипотезу гормональной регуляции в культуре клеток и тканей, которая сейчас известна, как правило Скуга-Миллера: если концентрация ауксинов и цитокининов в питательной среде относительно равны или концентрация ауксинов незначительно превосходит концентрацию цитокининов, то образуется каллус; если концентрация ауксинов значительно превосходит концентрацию цитокининов, то формируются корни; если концентрация ауксинов значительно меньше концентрации цитокининов, то образуются почки, побеги.

    Фитогормоны способны изменять проницаемость клеточных мембран. Под действием ауксинов и гиббереллинов усиливается выброс протонов из клетки, что приводит к подкислению клеточной стенки и ослаблению связей между целлюлозными фибриллами в результате частичного кислотного гидролиза пектиновых веществ. Поэтому клеточная стенка становится более эластичной и под действием тургорного давления вакуоли клетка приобретает способность к растяжению.
    Контрольные вопросы:

    1 Принцип криосохранения

    2 Значение и виды фитогормонов

    4 Выделение апикальных меристем. Выделение клеток, их групп и тканей
    Цель:

    - ознакомить обучающихся с выделением апикальных меристем, клеток, их групп и тканей



    План:

    1 Выделение апикальных меристем

    2 Выделение клеток, их групп и тканей
    В культуре тканей можно размножать растения и получать оздоровленный (безвирусный) посадочный материал. Для оздоровления растений используют культуру апексов или культуру апикальных меристем, так как в стеблевой апекс вирусы проникают медленнее, чем в другие части растений. При культивировании апексов размножение вирусов подавляется реакцией растительного организма на травму, вызванную отсечением верхушки.

    В in vitro используются апексы верхушечных и боковых почек (точек роста), кончиков корней (особенно проростков). Апикальная меристема — группа меристематических (образовательных) клеток, организованных в ростовой центр, занимающая терминальное положение в побеге или корне и обеспечивающая образование всех органов и первичных тканей (рисунок 1, 2, фото 1). Верхняя часть апикальной меристемы представлена инициалями (единственной клеткой — у хвощей и многих папоротников и многоклеточной структурой — у семенных растений). Ближайшие производные инициальных клеток часто выделяют в зону протомеристемы. Вслед за ней лежат ткани, уже частично дифференцированные, но всё ещё находящиеся в меристематическом состоянии, которые относят к частично детерминированной первичной меристеме. В зависимости от производимых ею систем тканей детерминированная меристема включает следующие клеточные комплексы: тунику, образющую в дальнейшем первичную покровную ткань (эпидермис) и часть первичной коры, и корпус, клетки которого постепенно формируют комплекс проводящих тканей (центральный цилиндр); в корне — дерматоген, дифференцирующийся в первичную покровную ткань (ризодермис); периблему — будущую первичную кору; плерому — центральный цилиндр. Таким образом, будущий ход развития меристематических тканей частично детерминирован уже самим размещением их в апексе побега и корня.



    Обычно на питательные среды высаживают небольшую часть меристемы до 0,5 мм. В целом закономерность такова: чем меньше величина меристемы, тем больше вероятность получения безвирусных растений. Ее выделение осуществляется в ламинар-боксе с использованием препаравальных инструментов под увеличением бинокулярного микроскопа.


    Рисунок 1 - Апикальная меристема в верхушечной почке побега элодеи (Elodea canadensis):

    А - продольный разрез; Б - конус нарастания (внешний вид и разрез); В - клетка первичной меристемы; Г - клетка из сформировавшегося листа (1 - конус нарастания, 2 - первичный бугорок, 3 - вторичный бугорок - бугорок пазушной почки, 4 – примордии - зачаточные листьев).


    Фото 1 - Апикальная меристема лилейника


    Рисунок 2 - Апикальная меристема в кончике корня:

    1 - калиптроген, 2 - дерматоген, 3 - периблема, 4 - плерома, 5 - ряд клеток, из которых образуется стела, 6 - сброшенные чехликом клетки, 7 - колумелла.


    Культивирование растений из апикальных меристем позволяет получать безвирусный оздоровленный посадочный материал практически всех сельскохозяйственных культур. Наиболее полно разработана технология получения безвирусного картофеля. Так система первичного семеноводства и оздоровления посадочного материала картофеля включает следующие этапы: подготовка клубней для вычленения апикальных меристем, вычленение апикальных меристем, регенерация растений из меристем, адаптация растений-регенерантов в защищенном грунте, получение первой продукции безвирусного материала в открытом грунте, выращивание безвирусного посадочного материала в первичных звеньях семеноводства, сохранение коллекции сортов.

    В культуре тканей используются апексы верхушечных и боковых почек. Чтобы исключить влияние метаболитов клубня на проростки и повысить регенерационную способность исходного материала из средней части клубня вырезают глазки с частью паренхимы (1,5 х 1,5 см). Глазки проращивают на песке, предварительно обработанном сухим жаром. Этиолированные проростки выращивают в темноте при температуре 25±2оС, влажности воздуха 70-80 %. Песок дважды в день увлажняют, через 7-10 дней проводят подкормку раствором Кнопа.

    Апикальные меристемы проростков изолируют на 12-13 пластохроне (промежуток времени между инициациями двух листовых бугорков). Изолированные меристемы культивируют в асептических условиях на питательных средах с богатым содержанием макро- и микросолей, с повышенной концентрацией цитокининов (6-БАП 2 мг/л). В культуральной комнате с кондиционированным воздухом поддерживают температуру 25±2оС, влажность воздуха 70 %, освещенность 5 кLx и фотопериод 16 часов.

    В среднем от посадки меристемы на среду до формирования проростков с 5-6 листочками проходит 30-45 дней, в некоторых случаях от 2 до 8 месяцев. Среды по мере истощения обновляют, и проростки периодически пересаживают на новые среды в стерильных условиях.


      1   2   3

    Коьрта
    Контакты

        Главная страница


    «Основы биотехнологии растений»