• Контрольные вопросы к теме 1.
  • 3. Разнообразие и приготовление питательных сред 3.1. Типы питательных сред и обзор их составов
  • Таблица 1 Прописи основных питательных сред используемых при микроклональном размножении растений
  • 3.2. Гормональная регуляция в культуре клеток и тканей «in vitro»
  • Лабораторная работа № 2 Тема: «Приготовление и стерилизация питательной среды Мурасиге-Скуга»
  • 4. Типы эксплантов: Способы получения и методы стерилизации 4.1. Выделение апикальных меристем
  • Апикальная меристема



  • страница2/5
    Дата18.03.2018
    Размер1.21 Mb.
    ТипОсновная образовательная программа

    «Основы биотехнологии растений»


    1   2   3   4   5
    Тема: «Организация и оборудование биотехнологической лаборатории, правила работы в ней»

    Материалы и оборудование:

    Химические стаканы (50, 100, 250 мл), штативы с пробирками, инструменты (пинцеты, скальпели, ножницы, препарировальные иглы), моющие средства, (стиральный порошок), хромпик, гипохлорит натрия.
    Ход работы.

    1. Ознакомиться с устройством биотехнологической лаборатории.

    2. Под руководством преподавателя освоить принципы работы автоклава, сушильного шкафа, дистиллятора и другого вспомогательного оборудования.

    3. Посуду замочить в растворе гипохлорита натрия, тщательно отмыть в растворах детергентов (стиральный порошок), промыть 8-10 раз проточной водой, поместить на 4-6 часов в хромпик (смесь серной кислоты с бихроматом калия), промыть теплой водой, затем дважды дистиллированной.

    4. Чистую посуду поместить в сушильный шкаф на 2 часа при температуре 100-130оС.

    5. Сухую посуду для хранения закрыть ватными пробками, фольгой, целлофаном.


    Контрольные вопросы к теме 1.

    1. Как устроена биотехнологическая лаборатория?

    2. Как простерилизовать питательные среды, посуду, дистиллированную воду, инструменты?

    3. Как происходит стерилизация помещения лаборатории?



    3. Разнообразие и приготовление питательных сред
    3.1. Типы питательных сред и обзор их составов

    В зависимости от вида растений необходимо испытывать как твердые (агаризованные), так и жидкие питательные среды. Иногда жидкие среды имеют преимущество, так как обеспечивают большую подвижность трофических элементов. Например, при размножении роз более успешным было культивирование побегов на двухслойной питательной среде: нижний слой – агаризованный, верхний – жидкий. На эффективность размножения могут также влиять расположение экспланта (горизонтальное или вертикальное), тип пробок (ватные, пластмассовые, стеклянные, металлические и т.д.), а также соотношение объема эксплантов и количества питательной среды для оптимального освещения и газообмена эксплантов.

    Состав питательной среды необходимо подбирать для каждого вида растений. На микроклональное размножение влияют гормоны, минеральные соли, витамины и углеводы. При размножении in vitro часто используют среды Мурасиге и Скуга, Гамборга, Хеллера и другие. Обычно используют среду Мурасиге–Скуга (MS), которая содержит много неорганического азота, что стимулирует процессы органогенеза и соматического эмбриогенеза. Вопрос оптимального соотношения NH4 - NO3 остается открытым, так как литературные данные весьма противоречивы и универсального рецепта для всех видов растений нет. В качестве источника углеродного питания используют различные углеводы типа сахарозы, глюкозы, фруктозы, галактозы. Разные культуры требуют различной концентрации углеводов на разных этапах микроклонального размножения.

    Компоненты среды для выращивания растительных клеток и тканей можно разделить на 6 основных групп, что обычно отражает порядок приготовления концентрированных маточных растворов: макроэлементы, микроэлементы, источники железа, витамины, источники углерода, фитогормоны.

    Основой для всех питательных сред для культивирования растительных эксплантов является смесь минеральных солей. Это соединения азота в виде нитратов, нитритов, солей аммония; фосфора – в виде фосфатов; серы – в виде сульфатов; а также растворимых солей К+, Na+, Са++, Мg++. Железо используется в виде хелатов [FeО4 или Fe2O4 + ЭДТА (этилендиаминтетрауксусная кислота) или её натриевая соль Na ЭДТА (трилон Б)] – наиболее доступной форме для усвоения растительными тканями.

    Азот, фосфор, сера входят в состав органических соединений: белков, жиров, нуклеиновых кислот. Железо, цинк, марганец, молибден, кобальт в сочетании с порфиринами образуют макромолекулы пигментов фотосинтеза (хлорофилла), окислительно-восстановительных ферментов (каталазы, пероксидазы, полифенолоксидазы). Следовательно, все эти соединения выполняют в клетках и тканях структурную функцию. В то же время ионы К+, Na+, Са++, Cl –, Н + необходимы для регуляции pH среды и поддержания физиологических градиентов клеток (тургора, осмотического давления, полярности).

    В качестве источника углерода для биологических макромолекул, а также при культивировании гетеротрофных тканей (каллусов и суспензий) в питательные среды добавляют углеводы в концентрации 20-60 г/л. Обычно это дисахариды (сахароза), моносахариды (гексозы: глюкоза и фруктоза, пентозы: ксилоза и другие). Полисахариды в питательных средах практически не используются. Только некоторые типы тканей (опухолевые), содержащие гидролитические ферменты, выращивают на средах с крахмалом, рафинозой, целлобиозой.

    Для стимуляции биохимических реакций в клетке используют биологиче-ские катализаторы – витамины группы В (В1, В6, В12), С (аскорбиновую кислоту), РР (никотиновую кислоту), мезоинозит.

    Тиамин (В1) входит в состав пируватдекарбоксилазы, участвует в превращениях углеводов. Тиаминпирофосфат входит в состав ферментов окислительного декарбоксилирования кетокислот (пировиноградной и кетоглутаровой), является коферментом транскетолазы.

    Пиридоксин (В6) в виде фосфорнркислого эфира входит в состав ферментов декарбоксилирования и переаминирования аминокислот.

    Никотиновая кислота (РР) в виде амида входит в состав дегидрогеназ НАД и НАДФ, катализирующих донорно-акцепторную цепь Н+ (отнятие Н+ от молекул органических веществ).

    Для управления процессами формообразования в культуре тканей необходимы биологические регуляторы роста и развития – фитогормоны. Эти вещества влияют на дифференциацию и дедифференциацию клеток и тканей, инициируют гистогенез, индуцируют деление и растяжение клеток, участвуют в процессах старения и созревания, либо стимулируют, либо ингибируют рост и развитие клеточных культур, обуславливают формирование пола. В биотехнологических исследованиях чаще используют гормоны, стимулирующие рост и развитие: ауксины, цитокинины, гиббереллины.

    Ауксины: ИУК – индолил-3-уксусная кислота, ИМК – индолил-3-масляная кислота, НУК – нафтилуксусная кислота, 2,4-Д – 2,4-дихлорфенокси-уксусная кислота.

    Цитокинины: кинетин – 6-фурфуриламинопурин, зеатин, NN-дифенил-мочевина, 6-БАП – 6-бензиламинопурин.

    Гиббереллины: гиберрелловая кислота.

    В качестве биологических добавок для индукции первичного каллуса можно использовать растительные экстракты (10-15 % от общего объёма среды): кокосовое молоко (жидкий эндосперм кокосового ореха), вытяжки из незрелых зерновок кукурузы (лучше в период молочной спелости), которые содержат цитокинины – кинетин и зеатин (6-ти замещенные аминопурины) и NN-дифенилмочевину.

    В культуре in vitro применяют жидкие и агаризованные (твердые) среды. Жидкие среды используются для культивирования суспензий, каллусов, изолированных органов и тканей, растений-регенерантов. При этом для поддержания эксплантов в пробирки со средой помещают специальные мостики-поддержки из фильтровальной бумаги или синтетических пористых материалов.

    Агаризованные среды готовят на основе агар-агара – полисахарида, входящего в состав морских водорослей, который образует с водой гель при pH 5,6-6,0. Иногда в качестве уплотнителя и заменителя агар-агара используют полиакриламидные гели (биогели) P10 и P200.

    Для искусственных питательных сред растворы макро- и микросолей готовят заранее и используют многократно. Это маточные (концентрированные) растворы. Их хранят в специальных условиях: макро- и микросоли в холодильнике в сосудах с притертыми пробками при 0…+4оС; витамины, фитогормоны, ферменты, растительные экстракты – при -20оС в небольших по 5-10 мл сосудах с пробками (пеницилловые флаконы).

    Маточные растворы макросолей обычно превосходят рабочие по концентрации в 10-40 раз, микросолей – в 100-1000 раз, витаминов – в 1000 раз.

    Растворы фитогормонов желательно готовить непосредственно перед работой со средами.

    Для приготовления маточного раствора макро- и микросолей каждую соль растворяют в отдельном стаканчике при нагревании, затем сливают и доводят до нужного объема. В охлажденную смесь микросолей последним добавляют раствор солей молибдена, а в макросоли – раствор солей магния (для предотвращения выпадения осадка).

    Маточные растворы хлористого кальция и хелата железа (сернокислое железо + ЭДТА, либо Na ЭДТА – трилон Б) готовят и хранят отдельно от других солей.

    Концентрированные растворы витаминов готовят следующим образом: 10-кратные навески растворяют в 10 мл дистиллированной воды каждый отдельно.



    Фитогормоны – это вещества, которые плохо растворяются в воде. Поэтому предварительно 100 мг вещества растворяют в небольших количествах (0,5-2,0 мл) спирта (ауксины, гиббереллины), 0,5-1 н HCl или КОН (цитокинины), затем подогревают до полного растворения (кроме абсцизовой кислоты и кинетина) и доводят до 100 мл объема (1 мл содержит 1 мг вещества).

    Таблица 1

    Прописи основных питательных сред используемых при микроклональном размножении растений

    Компонент

    Состав питательных сред, мг/л

    Knudson С

    Murashige & Skoog

    Harvais I A

    Van Waes & Deberg

    BM 1

    BM 2

    Ca(NO3)2 *4H2О

    1000




    400







    (NH 4)2SO4

    500













    KN03




    1900

    200







    CaCl2 *2H 2 О




    440










    NH4NO3




    1650

    400







    КH2РО4

    250

    170

    200

    240

    240

    KCI







    100







    MgS04*7H2 О

    250

    370

    200

    100

    100

    FeSO4 *7H 2 0

    25

    27,95




    27,95

    27,95

    Na2ЭДТА




    37,23




    37,23

    37,23

    Хелат железа







    5 мл







    CoCl2 *6 H 2 О




    0,025

    0,02







    ZnSO4 *7Н2О




    8,6

    0,5

    10

    10

    H3ВО3




    6,2

    0,5

    10

    to

    MgS04*4H20

    7,5

    22,3

    0,5

    25

    25

    CuS04 *5Н2О




    0,025

    0,5

    0,025

    0,025

    Na2 МoО4*2Н2О




    0,25

    0,04

    0,25

    0,25

    KJ




    0,83

    0,1







    Глицин




    2




    2

    2

    Мезоинозит




    100




    1200

    1200

    Никотиновая кислота




    0,5

    5

    5

    5

    Тиамин




    0,1

    5

    0,5

    0,5

    Пиридоксин




    0,5

    0,5

    0,5

    0,5

    Фолиевая кислота










    0,5

    0,5

    Биотин










    0,05

    0,05

    Гидролизат казеина










    500

    500

    L -глютамин










    100

    100

    6-БАП













    0,2

    Сахароза

    20000

    30000




    20000

    20000

    Картофельный экстракт







    100 мл







    Агар - агар

    17500

    10000

    10000

    6000

    6000

    pH среды

    4,8-5,2

    5,7

    6,0-6,4

    5,8

    5,8

    3.2. Гормональная регуляция в культуре клеток и тканей «in vitro»

    Фитогормоны – это биологические регуляторы роста и развития растений, осуществляющие взаимодействие клеток, тканей и органов, стимулирующие и ингибирующие морфогенетические и физиологические процессы в растительных организмах. Фитогормоны влияют на деление и рост клеток растяжением, состояние покоя, созревание, старение, формирование пола, устойчивость к стрессу, тропизмы, транспирацию; обеспечивают функциональную целостность растительного организма, закономерную последовательность фаз индивидуального развития.

    По химической природе гормоны растений четко подразделяются на две группы: производные мевалоновой кислоты (гиббереллины, абсцизины, брассины, фузикокцин, цитокинины), производные аминокислот (ауксины –из триптофана, этилен – из метионина и аланина). Биосинтез фитогормонов происходит в определенных частях растений: в апексах побегов образуется ИУК– индолил-3-уксусная кислота, лист служит донором ключевого продукта синтеза гиббереллинов – каурена, а также абсцизовой кислоты, в апексах корней синтезируется кинетин, а в зоне растяжения корня – гиббереллины, источником зеатина является эндосперм прорастающих семян.

    По функциональному действию различают 5 основных групп фитогормонов: ауксины, цитокинины, гиббереллины, абсцизины и этилен. Ауксины в культуре тканей вызывают рост клеток растяжением, в больших концентрациях – деление клеток, в сочетании с цитокининами – органогенез. В биотехнологии применяют как природные ауксины (ИУК), так и синтетические [ИМК (индолил-З-масляная кислота), ИПК (индолил-З-пропионовая кисло-та), 2,4-Д (2,4-дихлорфеноксиуксусная кислота), НУК(нафтилуксусная ки-слота)].

    Цитокинины в сочетании с ауксинами индуцируют митозы, пролиферацию клеток, почек и побегов. К природным цитокининам относятся: зеатин, кинетин (6-фурфуриламинопурин), NN-дифенилмочевина (кокосовое молоко); к синтетическим – 6-БАП (6-бензиламинопурин).

    Гиббереллины стимулируют рост клеток растяжением, а также синтез ауксинов и цитокининов. Сейчас известно около 60 видов гиббереллинов. В культуре ткани используется гибберелловая кислота.

    Абсцизины (АБК – абсцизовая кислота) и этилен ингибируют ростовые процессы, деление клеток, в сочетании с цитокининами и хлорхолинхлоридом индуцируют органогенез (образование микроклубней).

    Гормональная система тесно связана с генетическим аппаратом клетки. Фитогормоны не только влияют на степень метилирования ДНК и таким образом регулируют экспрессию генов, но и связываются с белками – репрессорами на опероне, что приводит к активации структурных генов и синтезу определенных ферментов. Следовательно, изменяя соотношение гормонов в питательных средах, можно в какой-то степени изменять и генетические программы клеток и тканей. Эти процессы известны как дедифференциация, ре-дифференциация и дифференциация клеток и тканей.

    В растении фитогормоны находятся в тесном взаимодействии друг с другом: ИУК индуцирует синтез этилена и цитокининов, ГК увеличивает содержание ИУК, цитокинины усиливают синтез МУК, но снижают содержание свободной АБК, этилен тормозит транспорт ИУК и увеличивает содержание АБК.

    В культуре ткани фитогормоны, добавленные в различных пропорциях, регулируют синтез эндогенных гормонов растений, что проявляется в разнообразных морфогенетических реакциях клеток и тканей.

    В 1955 г. Скуг и Миллер предложили гипотезу гормональной регуляции в культуре клеток и тканей, которая сейчас известна, как правило Скуга-Миллера: если концентрация ауксинов и цитокининов в питательной среде относительно равны или концентрация ауксинов незначительно превосходит концентрацию цитокининов, то образуется каллус; если концентрация ауксинов значительно превосходит концентрацию цитокининов, то формируются корни; если концентрация ауксинов значительно меньше концентрации цитокининов, то образуются почки, побеги.

    Фитогормоны способны изменять проницаемость клеточных мембран. Под действием ауксинов и гиббереллинов усиливается выброс протонов из клетки, что приводит к подкислению клеточной стенки и ослаблению связей между целлюлозными фибриллами в результате частичного кислотного гидролиза пектиновых веществ. Поэтому клеточная стенка становится более эластичной и под действием тургорного давления вакуоли клетка приобретает способность к растяжению.


    Лабораторная работа № 2

    Тема: «Приготовление и стерилизация питательной среды Мурасиге-Скуга»

    Материалы и оборудование. Химические стаканы, колбы, мерные цилиндры от 5 мл до 2 л, пробирки, пипетки от 0,01 мл до 10 мл или дозаторы, весы аналитические до 500 г, весы торсионные до 100 мг, пинцеты, ножницы, шпатели, электроплитки, магнитные мешалки, химические реактивы или готовые маточные растворы макро- и микросолей, витаминов, фитогормонов.

    Ход работы.

    1. В химический стакан емкостью 2 л поместить 20 г сахарозы, долить дистиллированной водой до 400 мл и растворить.

    2. Добавить к раствору сахарозы 50 мл маточного раствора макросолей, 1 мл микросолей, 5 мл хелата железа, 5 мл хлористого кальция.

    3. Приготовить агар: навеску 7 г поместить в стакан и залить водой до 200 мл, растворить, нагревая плитке или газовой горелке, при постоянном помешивании. Готовый агар долить к раствору солей.

    4. Питательную среду довести до нужного объема (1 л) дистиллированной водой. Измерить pH среды: если pH превышает 5,5-6,0 добавить несколько капель 0,1 н HCl, если ниже этого значения – 0,1 н КОН.

    5. Готовую питательную среду разлить в колбы, около 25мл, закрыть их фольгой.

    6. Поместить колбы в автоклав и проавтоклавировать.

    7. Металлические инструменты завернуть в плотную бумагу и поместить в сушильный шкаф для стерилизации сухим жаром при to 170-200oС в течение 2 часов.

    8. Чашки Петри, колбы с питательной средой, вату, марлю, фильтровальную бумагу, колбы с дистиллированной водой (закрытые фольгой) поместить в автоклав.

    9. Автоклав привести в рабочее состояние: закрыть плотно крышку, воду залить до метки. Включить автоклав, давление пара довести до метки 1,2 атм. (в паровой камере), заполнить паром стерилизационную камеру, вытеснить конденсат в течении 10 минут, при этом давление пара в стерилизационной камере должно быть на уровне 0,1-0,2 атм. Довести давление в стерилизационной камере до 1 атм., включить автоматический режим.

    10. Автоклавировать 20 минут при давлении в стерилизационной камере 1-1,2 атм.

    11. Отключить автоклав, вытеснить пар из обеих камер довести давление до 0 атм.

    12. Проавтоклавированные материалы перенести в комнату для пересадки тканей и поместить в шкафы или на стеллажи.


    4. Типы эксплантов:

    Способы получения и методы стерилизации
    4.1. Выделение апикальных меристем

    В культуре тканей можно размножать растения и получать оздоровленный (безвирусный) посадочный материал. Для оздоровления растений используют культуру апексов или культуру апикальных меристем, так как в стеблевой апекс вирусы проникают медленнее, чем в другие части растений. При культивировании апексов размножение вирусов подавляется реакцией растительного организма на травму, вызванную отсечением верхушки.

    В in vitro используются апексы верхушечных и боковых почек (точек роста), кончиков корней (особенно проростков). Апикальная меристема — группа меристематических (образовательных) клеток, организованных в ростовой центр, занимающая терминальное положение в побеге или корне и обеспечивающая образование всех органов и первичных тканей. Верхняя часть апикальной меристемы представлена инициалями (единственной клеткой — у хвощей и многих папоротников и многоклеточной структурой — у семенных растений). Ближайшие производные инициальных клеток часто выделяют в зону протомеристемы. Вслед за ней лежат ткани, уже частично дифференцированные, но всё ещё находящиеся в меристематическом состоянии, которые относят к частично детерминированной первичной меристеме. В зависимости от производимых ею систем тканей детерминированная меристема включает следующие клеточные комплексы: тунику, образющую в дальнейшем первичную покровную ткань (эпидермис) и часть первичной коры, и корпус, клетки которого постепенно формируют комплекс проводящих тканей (центральный цилиндр); в корне — дерматоген, дифференцирующийся в первичную покровную ткань (ризодермис); периблему — будущую первичную кору; плерому — центральный цилиндр. Таким образом, будущий ход развития меристематических тканей частично детерминирован уже самим размещением их в апексе побега и корня.

    Обычно на питательные среды высаживают небольшую часть меристемы до 0,5 мм. В целом закономерность такова: чем меньше величина меристемы, тем больше вероятность получения безвирусных растений. Ее выделение осуществляется в ламинар-боксе с использованием препаравальных инструментов под увеличением бинокулярного микроскопа.


    Рис. Апикальная меристема в верхушечной почке побега элодеи (Elodea canadensis):



    А - продольный разрез; Б - конус нарастания (внешний вид и разрез); В - клетка первичной меристемы; Г - клетка из сформировавшегося листа (1 - конус нарастания, 2 - первичный бугорок, 3 - вторичный бугорок - бугорок пазушной почки, 4 – примордии - зачаточные листьев).

    Фото Апикальная меристема лилейника



    Рис. Апикальная меристема в кончике корня:

    1 - калиптроген, 2 - дерматоген, 3 - периблема, 4 - плерома, 5 - ряд клеток, из которых образуется стела, 6 - сброшенные чехликом клетки, 7 - колумелла.


    Культивирование растений из апикальных меристем позволяет получать безвирусный оздоровленный посадочный материал практически всех сельскохозяйственных культур. Наиболее полно разработана технология получения безвирусного картофеля. Так система первичного семеноводства и оздоровления посадочного материала картофеля включает следующие этапы: подготовка клубней для вычленения апикальных меристем, вычленение апикальных меристем, регенерация растений из меристем, адаптация растений-регенерантов в защищенном грунте, получение первой продукции безвирусного материала в открытом грунте, выращивание безвирусного посадочного материала в первичных звеньях семеноводства, сохранение коллекции сортов.

    В культуре тканей используются апексы верхушечных и боковых почек. Чтобы исключить влияние метаболитов клубня на проростки и повысить регенерационную способность исходного материала из средней части клубня вырезают глазки с частью паренхимы (1,5 х 1,5 см). Глазки проращивают на песке, предварительно обработанном сухим жаром. Этиолированные проростки выращивают в темноте при температуре 25±2оС, влажности воздуха 70-80 %. Песок дважды в день увлажняют, через 7-10 дней проводят подкормку раствором Кнопа.

    Апикальные меристемы проростков изолируют на 12-13 пластохроне (промежуток времени между инициациями двух листовых бугорков). Изолированные меристемы культивируют в асептических условиях на питательных средах с богатым содержанием макро- и микросолей, с повышенной концентрацией цитокининов (6-БАП 2 мг/л). В культуральной комнате с кондиционированным воздухом поддерживают температуру 25±2оС, влажность воздуха 70 %, освещенность 5 кLx и фотопериод 16 часов.

    В среднем от посадки меристемы на среду до формирования проростков с 5-6 листочками проходит 30-45 дней, в некоторых случаях от 2 до 8 месяцев. Среды по мере истощения обновляют, и проростки периодически пересаживают на новые среды в стерильных условиях.

    1   2   3   4   5

    Коьрта
    Контакты

        Главная страница


    «Основы биотехнологии растений»