9 В правильной четырехугольной пирамиде точка – центр основания, – вершина, , . Найдите боковое ребро
ЧАСТЬ 2
10 Найдите значение выражения при
11 Катер должен пересечь реку шириной м и со скоростью течения м/с так, чтобы причалить точно напротив места отправления. Он может двигаться с разными скоростями, при этом время в пути, измеряемое в секундах, определяется выражением , где — острый угол, задающий направление его движения (отсчитывается от берега). Под каким минимальным углом (в градусах) нужно плыть, чтобы время в пути было не больше 80 с?
12 Площадь осевого сечения цилиндра равна 8. Найдите площадь боковой поверхности цилиндра, деленную на .
13 Имеется два сплава. Первый сплав содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?
14 Найдите точку минимума функции.
15 а) Решить уравнение:
б) Найти все корни на промежутке 
|
16 В правильной треугольной призме боковое ребро равно а ребро основания равно 1. Точка — середина ребра Найдите объём пятигранника
17 Решите неравенство
18 Окружность с центром O, вписанная в треугольник ABC, касается стороны BC в точке P и пересекает отрезок BO в точке Q. При этом отрезки OC и QP параллельны.
а) Докажите, что треугольник ABC ― равнобедренный треугольник.
б) Найдите площадь треугольника BQP, если точка O делит высоту BD треугольника в отношении BO:OD = 3:1 и AC = 2a.
19 Банк под определённый процент принял некоторую сумму. Через год четверть накопленной суммы была снята со счёта. Банк увеличил процент годовых на 40%. К концу следующего года накопленная сумма в 1,44 раза превысила первоначальный вклад. Каков процент новых годовых?
20 Найдите все значения а, при каждом из которых уравнение
имеет единственный корень.
21 На сайте проводится опрос, кого из футболистов посетители сайта считают лучшим по итогам сезона. Каждый посетитель голосует за одного футболиста. На сайте отображается рейтинг каждого футболиста — доля голосов, отданных за него, в процентах, округленная до целого числа. Например, числа 9,3, 10,5 и 12,7 округляются до 9, 11 и 13 соответственно.
а) Всего проголосовало 13 посетителей сайта. Голоса распределились так, что рейтинг некоторого футболиста стал равным 31. Затем Вася проголосовал за этого футболиста. Каков теперь рейтинг футболиста с учётом голоса Васи?
б) Голоса распределяют между двумя футболистами. Может ли суммарный рейтинг быть больше 100?
в) На сайте отображалось, что рейтинг некоторого футболиста равен 7. После того, как Вася отдал свой голос за этого футболиста рейтинг стал равен 9. При каком наибольшем числе отданных за всех футболистов голосов, включая Васин голос, такое возможно?
|